Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Please Wake Up
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

100% PROOF: Aliens Are Real !!!!!!! SEE FOR YOURSELF

% of readers think this story is Fact. Add your two cents.


Coumbia Space Shuttle Crash – Astronauts Returning Never Able to Tell the Truth 

 

Published on Nov 25, 2013

THE VIDEO SPEAKS FOR ITSELF………SO………THIS IS WHAT THOSE GUYS WITNESSED! CAN YOU IMAGINE ?? BEING , IN SPACE …..AND SEEING UFOS RIGHT THERE , NOT ABLE TO RUN AND HIDE! SITTING DUCKS! CAN YOU IMAGINE WHAT THEY WERE THINKING ! AND THEY NEVER MADE IT BACK TO EARTH TO SPEAK A WORD OF IT !! LET THE TRUTH RING VIRAL!!

______________________________________________________________________________________________

Space Shuttle Columbia disaster

From Wikipedia, the free encyclopedia
 
 
For further information about Columbia’s mission and crew, see STS-107.
Space Shuttle Columbia disaster

STS-107 flight insignia
Time 08:59 EST (13:59 UTC)
Date 1 February 2003
Location Over Texas and Louisiana
Outcome Space Shuttle fleet was grounded for more than two years while safety measures were added, including procedures to deal with catastrophic cabin depressurization, better crew restraints, and an automated parachute system.
Casualties
Rick D. Husband
William C. McCool
Michael P. Anderson
Kalpana Chawla
David M. Brown
Laurel Clark
Ilan Ramon
Inquiries Columbia Accident Investigation Board

The Space Shuttle Columbia disaster occurred on February 1, 2003, when Columbia disintegrated overTexas and Louisiana as it reentered Earth’s atmosphere, killing all seven crew members.

During the launch of STS-107Columbia’s 28th mission, a piece of foam insulation broke off from the Space Shuttle external tank and struck the left wing. Most previous shuttle launches had seen minor damage from foam shedding,[1] but some engineers suspected that the damage to Columbia was more serious. NASAmanagers limited the investigation, reasoning that the crew could not have fixed the problem if it were confirmed.[2]

When the Shuttle reentered the atmosphere of Earth, the damage allowed hot atmospheric gases to penetrate and destroy the internal wing structure, which caused the spacecraft to become unstable and slowly break apart.[3]

After the disaster, Space Shuttle flight operations were suspended for more than two years, similar to the aftermath of the Challenger disaster. Construction of the International Space Station (ISS) was put on hold; the station relied entirely on the Russian Federal Space Agency for resupply for 29 months until Shuttle flights resumed with STS-114 and 41 months for crew rotation until STS-121.

Several technical and organizational changes were made, including adding a thorough on-orbit inspection to determine how well the shuttle’s thermal protection system had endured the ascent, and keeping a designated rescue mission ready in case irreparable damage was found. Except for one final mission to repair the Hubble Space Telescope, subsequent missions were flown only to the ISS so that the crew could use it as a “safe haven”.

 

 

Crew[edit]

The crew of STS-107. L to R:BrownHusbandClarkChawla,AndersonMcCoolRamon

Debris strike during launch[edit]

Columbia lifting off on its final mission. The light-colored triangle visible at the base of the strut near the nose of the orbiter is the Left Bipod Foam Ramp. Video

Space Shuttle external tank foam block.

Close-up of the Left Bipod Foam Ramp that broke off and damaged the Shuttle wing.

The shuttle’s main fuel tank is covered in thermal insulation foam intended to prevent ice from forming when the tank is full of liquid hydrogen and oxygen. Such ice could damage the shuttle if shed during lift-off.

Mission STS-107 was the 113th Space Shuttle launch. Planned to begin on January 11, 2001, the mission was delayed 18 times[4] and eventually launched on January 16, 2003, following STS-113 (The Columbia Accident Investigation Board determined that this delay had nothing to do with the catastrophic failure[4]).

About 82 seconds after launch from Kennedy Space Center‘s LC-39-A, a suitcase-size piece of foam broke off from the External Tank (ET), striking Columbia’s left wing reinforced carbon-carbon (RCC) panels. As demonstrated by ground experiments conducted by the Columbia Accident Investigation Board, this likely created a 6-to-10-inch (15 to 25 cm) diameter hole, allowing hot gases to enter the wing when Columbia later reentered the atmosphere. At the time of the foam strike, the orbiter was at an altitude of about 66,000 feet (20 km; 12.5 mi), traveling at Mach 2.46 (1,870 miles per hour or 840 meters per second).

The Left Bipod Foam Ramp is an approximately three-foot (one-meter) aerodynamic component made entirely of foam. The foam, not normally considered to be a structural material, is required to bear some aerodynamic loads. Because of these special requirements, the casting-in-place and curing of the ramps may be performed only by a senior technician.[5] The bipod ramp (having left and right sides) was originally designed to reduce aerodynamic stresses around the bipod attachment points at the external tank, but it was proven unnecessary in the wake of the accident and was removed from the external tank design for tanks flown after STS-107 (another foam ramp along the liquid oxygen line was also later removed from the tank design to eliminate it as a foam debris source, after complex analysis and tests proved this change safe).

Bipod Ramp insulation had been observed falling off, in whole or in part, on four previous flights: STS-7 (1983), STS-32 (1990), STS-50 (1992) and most recently STS-112 (just two launches before STS-107). All affected shuttle missions completed successfully. NASA management came to refer to this phenomenon as “foam shedding”. As with the O-ring erosion problems that ultimately doomed the Space Shuttle Challenger, NASA management became accustomed to these phenomena when no serious consequences resulted from these earlier episodes. This phenomenon was termed “normalization of deviance” by sociologist Diane Vaughan in her book on the Challenger launch decision process.[6]

As it happened, STS-112 had been the first flight with the “ET Cam”, a video feed mounted on the ET for the purpose of giving greater insight to the foam shedding problem. During that launch a chunk of foam broke away from the ET bipod ramp and hit the SRB-ET Attach Ring near the bottom of the left solid rocket booster (SRB) causing a dent four inches wide and three inches deep in it.[7] After STS-112, NASA leaders analyzed the situation and decided to press ahead under the justification that “The ET is safe to fly with no new concerns (and no added risk)” of further foam strikes.[8]

Video taken during lift-off of STS-107 was routinely reviewed two hours later and revealed nothing unusual. The following day, higher-resolution film that had been processed overnight revealed the foam debris striking the left wing, potentially damaging the thermal protection on the Space Shuttle.[9] At the time, the exact location where the foam struck the wing could not be determined due to the low resolution of the tracking camera footage.

Meanwhile, NASA’s judgement about the risks was revisited. Chair of the Mission Management Team (MMT) Linda Ham said the “Rationale was lousy then and still is”. Ham and Shuttle Program Manager Ron Dittemore had both been present at the October 31, 2002, meeting where the decision to continue with launches was made.[10]

Post-107 analysis revealed that two previous shuttle launches (STS-52 and -62) also had bipod ramp foam loss that went undetected. In addition, Protuberance Air Load (PAL) ramp foam had also shed pieces, and there were also spot losses from large-area foams.

Flight risk management[edit]

In a risk-management scenario similar to the Challenger disaster, NASA management failed to recognize the relevance of engineering concerns for safety for imaging to inspect possible damage, and failed to respond to engineer requests about the status of astronaut inspection of the left wing. Engineers made three separate requests for Department of Defense (DOD) imaging of the shuttle in orbit to more precisely determine damage. While the images were not guaranteed to show the damage, the capability existed for imaging of sufficient resolution to provide meaningful examination. NASA management did not honor the requests and in some cases intervened to stop the DOD from assisting.[11] The CAIB recommended subsequent shuttle flights be imaged while in orbit using ground-based or space-based DOD assets.[12] Details of the DOD’s unfulfilled participation with Columbia remain secret; retired NASA officialWayne Hale stated in 2012 that “Activity regarding other national assets and agencies remains classified and I cannot comment on that aspect of the Columbia tragedy”.[13]

Throughout the risk assessment process, senior NASA managers were influenced by their belief that nothing could be done even if damage were detected. This affected their stance on investigation urgency, thoroughness and possible contingency actions. They decided to conduct a parametric “what-if” scenario study more suited to determine risk probabilities of future events, instead of inspecting and assessing the actual damage. The investigation report in particular singled out NASA manager Linda Ham for exhibiting this attitude.[14] In 2013, Hale recalled that Director of Mission Operations John Harpold told him beforeColumbia’s destruction:

You know, there is nothing we can do about damage to the TPS [Thermal Protection System]. If it has been damaged it’s probably better not to know. I think the crew would rather not know. Don’t you think it would be better for them to have a happy successful flight and die unexpectedly during entry than to stay on orbit, knowing that there was nothing to be done, until the air ran out?[15]

Hale added, “I was hard pressed to disagree [at the time]. That mindset was widespread. Astronauts agreed. So don’t blame an individual; look for the organizational factors that lead to that kind of a mindset. Don’t let them in your organization”.[15]

Much of the risk assessment hinged on damage predictions to the thermal protection system. These fall into two categories: damage to the silica tile on the wing lower surface, and damage to the reinforced carbon-carbon (RCC) leading-edge panels (The TPS includes a third category of components: thermal insulating blankets; but damage predictions are not typically performed on them. Damage assessments on the thermal blankets can be performed after an anomaly has been observed, and this has been done at least once after the return to flight following Columbia’s loss).

Before the flight NASA believed that the RCC was very durable. Charles F. Bolden, who worked on tile-damage scenarios and repair methods early in his astronaut career, said in 2004 that[16]

never did we talk about [the RCC] because we all thought that it was impenetrable … I spent fourteen years in the space program flying, thinking that I had this huge mass that was about five or six inches thick on the leading edge of the wing. And, to find after Columbia that it was fractions of an inch thick, and that it wasn’t as strong as the Fiberglas on your Corvette, that was an eye-opener, and I think for all of us … the best minds that I know of, in and outside of NASA, never envisioned that as a failure mode.

Damage-prediction software was used to evaluate possible tile and RCC damage. The tool for predicting tile damage was known as “Crater”, described by several NASA representatives in press briefings as not actually a software program but rather a statistical spreadsheet of observed past flight events and effects. The “Crater” tool predicted severe penetration of multiple tiles by the impact if it struck the TPS tile area, but NASA engineers downplayed this. The engineers believed that results showing that the model overstated damage from small projectiles meant that the same would be true of larger Spray-On Foam Insulation (SOFI) impacts. The program used to predict RCC damage was based on small ice impacts the size of cigarette butts, not larger SOFI impacts, as the ice impacts were the only recognized threats to RCC panels up to that point. Under 1 of 15 predicted SOFI impact paths, the software predicted an ice impact would completely penetrate the RCC panel. Engineers downplayed this, too, believing that impacts of the less dense SOFI material would result in less damage than ice impacts. In an e-mail exchange, NASA managers questioned whether the density of the SOFI could be used as justification for reducing predicted damage. Despite engineering concerns about the energy imparted by the SOFI material, NASA managers ultimately accepted the rationale to reduce predicted damage of the RCC panels from possible complete penetration to slight damage to the panel’s thin coating.[17]

Ultimately the NASA Mission Management Team felt there was insufficient evidence to indicate that the strike was an unsafe situation, so they declared the debris strike a “turnaround” issue (not of highest importance) and denied the requests for the Department of Defense images.

On January 23, flight director Steve Stich sent an e-mail to Columbia, informing commander Husband and pilot McCool of the foam strike while unequivocally dismissing any concerns about entry safety.[18][19]

During ascent at approximately 80 seconds, photo analysis shows that some debris from the area of the -Y ET Bipod Attach Point came loose and subsequently impacted the orbiter left wing, in the area of transition from Chine to Main Wing, creating a shower of smaller particles. The impact appears to be totally on the lower surface and no particles are seen to traverse over the upper surface of the wing. Experts have reviewed the high speed photography and there is no concern for RCC or tile damage. We have seen this same phenomenon on several other flights and there is absolutely no concern for entry.[20]

Re-entry timeline[edit]

Columbia was scheduled to land at 9:16 a.m. EST.

The Flight Control Team had not been working on any issues or problems related to the planned de-orbit and re-entry of Columbia. In particular, the team had indicated no concerns about the debris that hit the left wing during ascent, and treated the re-entry like any other. The team worked through the de-orbit preparation checklist and re-entry checklist procedures. Weather forecasters, with the help of pilots in the Shuttle Training Aircraft, evaluated landing-site weather conditions at the Kennedy Space Center.

  • 8:00: Mission Control Center Entry Flight Director LeRoy Cain polled the Mission Control room for a GO/NO-GO decision for the de-orbit burn.

All weather observations and forecasts were within guidelines set by the flight rules, and all systems were normal.

  • 8:10: The Capsule Communicator (CAPCOM) told the crew that they were GO for de-orbit burn.
  • 8:15:30 (EI-1719): Husband and McCool executed the de-orbit burn using Columbia’s two Orbital Maneuvering System engines.

The Orbiter was upside down and tail-first over the Indian Ocean at an altitude of 175 miles (282 km) and speed of 17,500 miles per hour (7.8 km/s) when the burn was executed. A 2-minute, 38-second de-orbit burn during the 255th orbit slowed the Orbiter to begin its re-entry into the atmosphere. The burn proceeded normally, putting the crew under about one-tenth gravity. Husband then turned Columbia right side up, facing forward with the nose pitched up.

  • 8:44:09 (EI+000): Entry Interface (EI), arbitrarily defined as the point at which the Orbiter entered the discernible atmosphere at 400,000 feet (120 km; 76 mi), occurred over the Pacific Ocean.

As Columbia descended, the heat of reentry caused wing leading-edge temperatures to rise steadily, reaching an estimated 2,500 °F (1,370 °C) during the next six minutes (As former Space Shuttle Program Manager Wayne Hale said in a press briefing, about 90% of this heating is the result of compression of the atmospheric gas caused by the orbiter’s supersonic flight, rather than the result of friction).

Columbia at about 8:57. Debris is visible coming from the left wing (bottom). The image was taken at Starfire Optical Range at Kirtland Air Force Base.

  • 8:48:39 (EI+270): A sensor on the left wing leading edge spar showed strains higher than those seen on previous Columbia re-entries.

This was recorded only on the Modular Auxiliary Data System, which is similar in concept to a flight data recorder, and was not sent to ground controllers or shown to the crew.

  • 8:49:32 (EI+323)Columbia executed a planned roll to the right. Speed: Mach 24.5.

Columbia began a banking turn to manage lift and therefore limit the Orbiter’s rate of descent and heating.

  • 8:50:53 (EI+404)Columbia entered a 10-minute period of peak heating, during which the thermal stresses were at their maximum. Speed: Mach 24.1; altitude: 243,000 feet (74 km; 46.0 mi).
  • 8:52:00 (EI+471)Columbia was about 300 miles (480 km) west of the California coastline.

The wing leading-edge temperatures usually reached 2,650 °F (1,450 °C) at this point.

  • 8:53:26 (EI+557)Columbia crossed the California coast west of Sacramento. Speed: Mach 23; altitude: 231,600 feet (70.6 km; 43.86 mi).

Columbia debris (in red, orange, and yellow) detected by National Weather Service radar over Texas and Louisiana.

The Orbiter’s wing leading edge typically reached more than 2,800 °F (1,540 °C) at this point.

  • 8:53:46 (EI+577): Various people on the ground saw signs of debris being shed. Speed: Mach 22.8; altitude: 230,200 feet (70.2 km; 43.60 mi).

The superheated air surrounding the Orbiter suddenly brightened, causing a streak in the Orbiter’s luminescent trail that was quite noticeable in the pre-dawn skies over the West Coast. Observers witnessed four similar events during the following 23 seconds. Dialogue on some of the amateur footage indicates the observers were aware of the abnormality of what they were filming.

  • 8:54:24 (EI+615): The Maintenance, Mechanical, and Crew Systems (MMACS) officer told the Flight Director that four hydraulic sensors in the left wing were indicating “off-scale low”. In Mission Control, re-entry had been proceeding normally up to this point.

“Off-scale low” is a reading that falls below the minimum capability of the sensor, and it usually indicates that the sensor has stopped functioning, due to internal or external factors, not that the quantity it measures is actually below the sensor’s minimum response value.

  • 8:54:25 (EI+616)Columbia crossed from California into Nevada airspace. Speed: Mach 22.5; altitude: 227,400 feet (69.3 km; 43.07 mi).

Witnesses observed a bright flash at this point and 18 similar events in the next four minutes.

  • 8:55:00 (EI+651): Nearly 11 minutes after Columbia re-entered the atmosphere, wing leading-edge temperatures normally reached nearly 3,000 °F (1,650 °C).
  • 8:55:32 (EI+683)Columbia crossed from Nevada into Utah. Speed: Mach 21.8; altitude: 223,400 feet (68.1 km; 42.31 mi).
  • 8:55:52 (EI+703)Columbia crossed from Utah into Arizona.
  • 8:56:30 (EI+741)Columbia began a roll reversal, turning from right to left over Arizona.
  • 8:56:45 (EI+756)Columbia crossed from Arizona to New Mexico. Speed: Mach 20.9; altitude: 219,000 feet (67 km; 41.5 mi).
  • 8:57:24 (EI+795)Columbia passed just north of Albuquerque.
  • 8:58:00 (EI+831): At this point, wing leading-edge temperatures typically decreased to 2,880 °F (1,580 °C).
  • 8:58:20 (EI+851)Columbia crossed from New Mexico into Texas. Speed: Mach 19.5; altitude: 209,800 feet (63.9 km; 39.73 mi).

At about this time, the Orbiter shed a Thermal Protection System tile, the most westerly piece of debris that has been recovered. Searchers found the tile in a field in Littlefield, Texas, just northwest of Lubbock.

  • 8:59:15 (EI+906): MMACS told the Flight Director that pressure readings had been lost on both left main landing-gear tires. The Flight Director then instructed the Capsule Communicator (CAPCOM) to let the crew know that Mission Control saw the messages and was evaluating the indications, and added that the Flight Control Team did not understand the crew’s last transmission.
  • 8:59:32 (EI+923): A broken response from the mission commander was recorded: “Roger, uh, bu – [cut off in mid-word] …” It was the last communication from the crew and the last telemetry signal received in Mission Control.
  • 8:59:37 (EI+928): Hydraulic pressure, which is required to move the flight control surfaces, was lost at about 8:59:37. At that time, the Master Alarm would have sounded for the loss of hydraulics, and the shuttle began to lose control, beginning to roll and yaw uncontrollably, and the crew would have become aware of the serious problem.[21]
  • 9:00:18 (EI+969): Videos and eyewitness reports by observers on the ground in and near Dallas indicated that the Orbiter had disintegrated overhead, continued to break up into more and smaller pieces, and left multiple contrails, as it continued eastward. In Mission Control, while the loss of signal was a cause for concern, there was no sign of any serious problem. Before the orbiter broke up at 9:00:18, the Columbia cabin pressure was nominal and the crew was capable of conscious actions.[21] The crew module remained mostly intact through the breakup, though it had lost enough structural integrity that it lost pressure, and was completely depressurized no later than 9:00:53.
  • 9:00:57 (EI+1008): The crew module, intact to this point, was seen breaking into small subcomponents. It disappeared from view at 9:01:10. The crew, if not already dead, were killed no later than this point.
  • 9:05: Residents of north central Texas, particularly near Tyler, reported a loud boom, a small concussion wave, smoke trails and debris in the clear skies above the counties east of Dallas.
  • 9:12:39 (EI+1710): After hearing of reports of the shuttle being seen to break apart, Entry Flight Director LeRoy Cain declared a contingency (events leading to loss of the vehicle) and alerted search-and-rescue teams in the debris area. He called on the Ground Controller to “lock the doors”. Two minutes later, Mission Control put contingency procedures into effect. Nobody was permitted to enter or leave the room, and flight controllers had to preserve all the mission data for later investigation.[22]

Presidential response[edit]

 
MENU
 
 
 
0:00
 

President George W. Bush’s address on the Columbia‘s destruction, February 1, 2003.

At 14:04 EST (19:04 UTC), President George W. Bush said, “This day has brought terrible news and great sadness to our country … The Columbia is lost; there are no survivors”. Despite the disaster, Bush said, “The cause in which they died will continue….Our journey into space will go on”.[23] Bush later declared East Texas a federal disaster area, allowing federal agencies to help with the recovery effort.[24]

Recovery of debris[edit]

Grid on a floor

More than 2,000 debris fields were found in sparsely populated areas from Nacogdoches in East Texas, where a large amount of debris fell, to western Louisiana and the southwestern counties of Arkansas. One debris field has been mapped along a path stretching from south of Fort Worth to Hemphill, Texas, as well as into parts of Louisiana.[25] Various notable places that had debris included Stephen F. Austin State University in Nacogdoches and several casinos in Shreveport, Louisiana.[25] Along with pieces of the shuttle and bits of equipment, searchers also found human body parts, including arms, feet, a torso, a skull, and a heart.[26]

In the months after the disaster, the largest-ever organized ground search took place.[27] NASA issued warnings to the public that any debris could contain hazardous chemicals, that it should be left untouched, its location reported to local emergency services or government authorities, and that anyone in unauthorized possession of debris would be prosecuted. Because of the widespread area, volunteer amateur radio operators accompanied the search teams to provide communications support.[28]

A group of small (1 mm) adult Caenorhabditis elegans worms, living in petri dishes enclosed in aluminum canisters, survived re-entry and impact with the ground and were recovered weeks after the disaster.[29][30] The culture was found to be alive on April 28, 2003.[31] The worms were part of a biological research in canisters experiment designed to study the effect of weightlessness on physiology; the experiment was conducted by Cassie Conley, NASA’s current Planetary protection officer.[citation needed]

Debris Search Pilot Jules F. Mier Jr. and Debris Search Aviation Specialist Charles Krenek died in a helicopter crash that injured three others during the search.[32]

Some Texas residents recovered some of the debris, ignoring the warnings, and attempted to sell it on the online auction site eBay, starting at $10,000. The auction was quickly removed, but prices for Columbia merchandise such as programs, photographs and patches, went up dramatically following the disaster, creating a surge of Columbia-related listings.[33] A three-day amnesty offered for “looted” shuttle debris brought in hundreds of illegally recovered pieces.[34]About 40,000 recovered pieces of debris have never been identified. The largest pieces recovered include the front landing gear,[35] and a window frame.[36]

On May 9, 2008, it was reported that data from a disk drive on board Columbia had survived the shuttle accident, and while part of the 340 MB drive was damaged, 99% of the data was recovered.[37] The drive was used to store data from an experiment on the properties of shear thinning.[38]

On July 29, 2011, Nacogdoches authorities told NASA that a 4-foot (1.2 m) diameter piece of debris had been found in a lake. NASA identified the piece as a “PRSD: power reactant storage and distribution”.[39]

All recovered non-human Columbia debris is stored in unused office space at the Vehicle Assembly Building, except for parts of the crew compartment, which are kept separate.[40]

Crew cabin video[edit]

The glow of reentry as seen out the front windows.

Among the recovered items was a videotape recording made by the astronauts during the start of re-entry. The 13-minute recording shows the flight crew astronauts conducting routine re-entry procedures and joking with each other. None gives any indication of a problem. In the video, the flight-deck crew puts on their gloves and passes the video camera around to record plasma and flames visible outside the windows of the orbiter (a normal occurrence). The recording, which on normal flights would have continued through landing, ends about four minutes before the shuttle began to disintegrate and 11 minutes before Mission Control lost the signal from the orbiter.[41]

Investigation[edit]

Initial investigation[edit]

A mock-up of a space shuttle leading edge made with an RCC-panel taken fromDiscovery. Simulation of known and possible conditions of the foam impact onColumbia‘s final launch showed Brittle fracture of RCC.

NASA Space Shuttle Program Manager Ron Dittemore reported that “The first indication was loss of temperature sensors and hydraulic systems on the left wing. They were followed seconds and minutes later by several other problems, including loss of tire pressure indications on the left main gear and then indications of excessive structural heating”.[42] Analysis of 31 seconds of telemetry data which had initially been filtered out because of data corruption within it showed the shuttle fighting to maintain its orientation, eventually using maximum thrust from its Reaction Control System jets.

The investigation focused on the foam strike from the very beginning. Incidents of debris strikes from ice and foam causing damage during take-off were already well known, and had damaged orbiters, most noticeably during STS-45STS-27, and STS-87.[43] After the loss of Columbia, NASA concluded that mistakes during installation were the likely cause of foam loss, and retrained employees at Michoud Assembly Facility in Louisiana to apply foam without defects.[13] Tile damage had also been traced to ablating insulating material from the cryogenic fuel tank in the past. The composition of the foam insulation had been changed in 1997 to exclude the use of freon, a chemical that is suspected to cause ozone depletion; while NASA was exempted from legislation phasing out CFCs, the agency chose to change the foam nonetheless. STS-107 used an older “lightweight tank” (a design that was succeeded by the “superlightweight tank”, both being upgrades from the original space shuttle external tank) where the foam was sprayed on to the larger cylindrical surfaces using the newer freon-free foam. However, the bipod ramps were manufactured from BX-250 foam which was excluded from the EPA regulations and did use the original freon formula. The composition change did not contribute to the accident.[44] In any case, the original formulation had shown frequent foam losses, as discussed earlier in this article.

Columbia Accident Investigation Board[edit]

Following protocols established after the loss of Challenger, an independent investigating board was created immediately after the accident. The Columbia Accident Investigation Board, or CAIB, was chaired by retired US Navy Admiral Harold W. Gehman, Jr.,[45] and consisted of expert military and civilian analysts who investigated the accident in detail.

Columbia’s flight data recorder

Columbia‘s flight data recorder was found near Hemphill, Texas, on March 19, 2003.[46] Unlike commercial jet aircraft, the space shuttles did not have flight data recorders intended for after-crash analysis. Instead, the vehicle data were transmitted in real time to the ground via telemetry. Since Columbia was the first shuttle, it had a special flight data OEX (Orbiter EXperiments) recorder, designed to help engineers better understand vehicle performance during the first test flights. After the initial Shuttle test-flights were completed, the recorder was never removed from Columbia, and it was still functioning on the crashed flight. It recorded many hundreds of parameters, and contained very extensive logs of structural and other data, which allowed the CAIB to reconstruct many of the events during the process leading to breakup.[47]Investigators could often use the loss of signals from sensors on the wing to track how the damage progressed.[48] This was correlated with forensic debris analysis conducted at Lehigh University and other tests to obtain a final conclusion about the probable course of events.[49]

Beginning on May 30, 2003, foam impact tests were performed by Southwest Research Institute. They used a compressed air gun to fire a foam block of similar size and mass to that which struck Columbia, at the same estimated speed. To represent the leading edge of Columbia‘s left wing, RCC panels from NASA stock, along with the actual leading-edge panels from Enterprise, which were fiberglass, were mounted to a simulating structural metal frame. At the beginning of testing, the likely impact site was estimated to be between RCC panel 6 and 9, inclusive. Over many days, dozens of the foam blocks were shot at the wing leading edge model at various angles. These produced only cracks or surface damage to the RCC panels.

During June, further analysis of information from Columbia’s flight data recorder narrowed the probable impact site to one single panel: RCC wing panel 8. On July 7, in a final round of testing, a block fired at the side of an RCC panel 8 created a hole 16 by 16.7 inches (41 by 42 cm) in that protective RCC panel.[50]The tests demonstrated that a foam impact of the type Columbia sustained could seriously breach the thermal protection system on the wing leading edge.[51]

Conclusions[edit]

On August 26, the CAIB issued its report on the accident. The report confirmed the immediate cause of the accident was a breach in the leading edge of the left wing, caused by insulating foam shed during launch. The report also delved deeply into the underlying organizational and cultural issues that led to the accident. The report was highly critical of NASA’s decision-making and risk-assessment processes. It concluded the organizational structure and processes were sufficiently flawed and that a compromise of safety was expected no matter who was in the key decision-making positions. An example was the position of Shuttle Program Manager, where one individual was responsible for achieving safe, timely launches and acceptable costs, which are often conflicting goals. The CAIB report found that NASA had accepted deviations from design criteria as normal when they happened on several flights and did not lead to mission-compromising consequences. One of those was the conflict between a design specification stating that the thermal protection system was not designed to withstand significant impacts and the common occurrence of impact damage to it during flight. The board made recommendations for significant changes in processes and organizational culture.

On December 30, 2008, NASA released a further report, entitled Columbia Crew Survival Investigation Report, produced by a second commission, the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). NASA had commissioned this group, “to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles.”[52] The report concluded that: “The Columbia depressurization event occurred so rapidly that the crew members were incapacitated within seconds, before they could configure the suit for full protection from loss of cabin pressure. Although circulatory systems functioned for a brief time, the effects of the depressurization were severe enough that the crew could not have regained consciousness. This event was lethal to the crew”.

The report also concluded:

  • The crew did not have time to prepare themselves. Some crew members were not wearing their safety gloves, and one crew member was not wearing a helmet. New policies gave the crew more time to prepare for descent.
  • The crew’s safety harnesses malfunctioned during the violent descent. The harnesses on the three remaining shuttles were upgraded after the accident.

The key recommendations of the report included that future spacecraft crew survival systems should not rely on manual activation to protect the crew.[53]

Possible emergency procedures[edit]

The CAIB determined that a rescue mission, though risky, might have been possible provided NASA management had taken action soon enough.[54][55]They stated that, had NASA management acted in time, two possible contingency procedures were available: a rescue mission by shuttle Atlantis, and an emergency spacewalk to attempt repairs to the left wing thermal protection.

Normally, a rescue mission is not possible, due to the time required to prepare a shuttle for launch, and the limited consumables (power, water, air) of an orbiting shuttle. However, Atlantis was well along in processing for a planned March 1 launch on STS-114, and Columbia carried an unusually large quantity of consumables due to an Extended Duration Orbiter package. The CAIB determined that this would have allowed Columbia to stay in orbit until flight day 30 (February 15). NASA investigators determined that Atlantis processing could have been expedited with no skipped safety checks for a February 10 launch. Hence, if nothing went wrong, there was a five-day overlap for a possible rescue. As mission control could deorbit an empty shuttle, but could not control the orbiter’s reentry and landing, it would likely have sent Columbia into the Pacific Ocean;[55] NASA later developed the Remote Control Orbiter system to permit mission control to land a shuttle. Docking at the International Space Station for use as a haven while awaiting rescue (or to use the Soyuz to systematically ferry the crew to safety) would have been impossible due to the different orbital inclination of the vehicles.

NASA investigators determined that on-orbit repair by the shuttle astronauts was possible but overall considered “high risk”, primarily due to the uncertain resiliency of the repair using available materials and the anticipated high risk of doing additional damage to the Orbiter.[54][55] Columbia did not carry theCanadarm, or Remote Manipulator System, which would normally be used for camera inspection or transporting a spacewalking astronaut to the wing. Therefore, an unusual emergency extra-vehicular activity (EVA) would have been required. While there was no astronaut EVA training for maneuvering to the wing, astronauts are always prepared for a similarly difficult emergency EVA to close the external tank umbilical doors located on the orbiter underside, which is necessary for reentry. Similar methods could have reached the shuttle left wing for inspection or repair.[55]

For the repair, the CAIB determined that the astronauts would have to use tools and small pieces of titanium, or other metal, scavenged from the crew cabin. These metals would help protect the wing structure and would be held in place during re-entry by a water-filled bag that had turned into ice in the cold of space. The ice and metal would help restore wing leading edge geometry, preventing a turbulent airflow over the wing and therefore keeping heating and burn-through levels low enough for the crew to survive re-entry and bail out before landing. The CAIB could not determine whether a patched-up left wing would have survived even a modified re-entry, and concluded that the rescue option would have had a considerably higher chance of bringing Columbia‘s crew back alive.[54][55]

Memorials[edit]

On February 4, 2003, President George W. Bush and his wife Laura led a memorial service for the astronauts’ families at the Lyndon B. Johnson Space Center. Two days later, Vice President Dick Cheney and his wife Lynne led a similar service at Washington National CathedralPatti LaBelle sang “Way Up There” as part of the service.[56]

A makeshift memorial at the main entrance to the Lyndon B. Johnson Space Center in Houston, Texas

Columbia Memorial inArlington National Cemetery

Columbia memorial on Mars Exploration Rover ”Spirit”

Space Shuttle Columbia memorial – Sabine County, Texas

On February 2, large memorial Catholic Brazilian masses were held in Rio de Janeiro and Sao Paulo, whereBrazilian Catholic priest Marcelo Rossi and his concert partner Belo sang “Noites Traicoeiras (Treacherous Nights)” as tribute to the seven Columbia astronauts as well as the other seven astronauts who lost their lives in the other space shuttle in the 1986 Space Shuttle Challenger disaster. At Rio de Janeiro‘s famous CopacabanaBeach, a large Roman Catholic memorial concert, attended by an estimated 1,100 Brazilian citizens, took place. Father Marcelo Rossi and the thousand-plus strong Brazilian audience performed the tribute song “Noites Traicoeiras” (Treacherous Nights) in honor of Space Shuttle Columbia and her crew, his partner Belo appeared live via Skype on large screens at the Columbia Memorial Concert and sang “Noites Traicoeiras” along with Father Rossi and the massive crowd of Brazilian people.

On March 26, the United States House of Representatives‘ Science Committee approved funds for the construction of a memorial at Arlington National Cemetery for the STS-107 crew. A similar memorial was built at the cemetery for the last crew of Challenger. On October 28, 2003, the names of the astronauts were added to the Space Mirror Memorial at the Kennedy Space Center Visitor Complex.

The Houston Astros, who reside in the same city as Johnson Space Center and whose team name honors the U.S. space program, honored the crew on April 1, 2003, the Opening Day of the season, by having seven simultaneous first pitchesthrown by family and friends of the Columbia crew. For the National Anthem, 107 NASA personnel, including flight controllers and others involved in Columbia‘s final mission, carried a U.S. flag onto the field. In addition, the Astros wore the mission patch on their sleeves and replaced all dugout advertising with the mission patch logo for the entire season.[57]

In 2004, Bush conferred posthumous Congressional Space Medals of Honor to all 14 astronauts lost in the Challenger andColumbia accidents.[58]

NASA named several places in honor of Columbia and the crew. Seven asteroids discovered in July 2001 at the Mount Palomar observatory were officially given the names of the seven astronauts: 51823 Rickhusband51824 Mikeanderson,51825 Davidbrown51826 Kalpanachawla51827 Laurelclark51828 Ilanramon51829 Williemccool.[59] On Mars, the landing site of the rover Spirit was named Columbia Memorial Station, and included a memorial plaque to theColumbia crew mounted on the back of the high gain antenna. A complex of seven hills east of the Spirit landing site was dubbed the Columbia Hills; each of the seven hills was individually named for a member of the crew, andHusband Hill in particular was ascended and explored by the rover. In 2006, the IAU approved naming of a cluster of seven small craters in the Apollo basin on the Far side of the Moon after the astronauts.[60] Back on Earth, NASA’s National Scientific Balloon Facility was renamed the Columbia Scientific Balloon Facility.

Other tributes included the decision by Amarillo, Texas, to rename its airport Rick Husband Amarillo International Airport after the Amarillo native. State Route 904 was renamed Lt. Michael P. Anderson Memorial Highway, as it runs through Cheney, Washington, the town where he graduated from high school. A newly constructed elementary school located on Fairchild Air Force Base near Spokane, Washington, was named Michael Anderson Elementary School. Anderson had attended fifth grade at Blair Elementary, the base’s previous elementary school, while his father was stationed there. A mountain peak near Kit Carson Peak and Challenger Point in the Sangre de Cristo Range was renamed Columbia Point, and a dedication plaque was placed on the point in August, 2003. Seven dormitories were named in honor of Columbia crew members at the Florida Institute of Technology,Creighton UniversityThe University of Texas at Arlington, and the Columbia Elementary School in the Brevard County School District. The Huntsville City Schools in Huntsville, Alabama, a city strongly associated with NASA, named their most recent high school Columbia High School as a memorial to the crew. A Department of Defense school in Guam was renamed Commander William C. McCool Elementary School.[61] The City of Palmdale, California, the birthplace of the entire shuttle fleet, changed the name of the thoroughfare Avenue M to Columbia Way. In Avondale, Arizona, the Avondale Elementary School where Michael Anderson’s sister worked had sent a t-shirt with him into space. It was supposed to have an assembly when he returned from space. The school was later renamed Michael Anderson Elementary.

In October, 2004, both houses of Congress passed a resolution authored by US Representative Lucille Roybal-Allard and co-sponsored by the entire contingent of California representatives to Congress changing the name of Downey, California‘s Space Science Learning Center to the Columbia Memorial Space Science Learning Center. The facility is located at the former manufacturing site of the space shuttles, including Columbia and Challenger.[62]

The US Air Force‘s Squadron Officer School at Maxwell Air Force BaseAlabama, renamed their auditorium in Husband’s honor. He was a graduate of the program. The US Test Pilot School at Edwards Air Force Base in California named its pilot lounge for Husband.

NASA named a supercomputer ”Columbia” in the crew’s honor in 2004. It was located at the NASA Advanced Supercomputing Division at Ames Research Center on Moffett Federal Airfield near Mountain View, California. The first part of the system, built in 2003, known as “Kalpana” was dedicated to Chawla, who worked at Ames prior to joining the Space Shuttle program.[63] On February 5, 2003, the space agency of India, ISRO, renamed one of its meteorological satellites METSAT Kalpana-1 on the orders of Prime Minister Atal Bihari Vajpayee.

A US Navy compound at a major coalition military base in Afghanistan is named Camp McCool. In addition, the athletic field at McCool’s alma mater,Coronado High School in Lubbock, Texas, was renamed the Willie McCool Track and Field.

A proposed reservoir in Cherokee County in Eastern Texas is to be named Lake Columbia.[64]

Ilan Ramon High School was established in 2006 in Hod HaSharon, Israel, in tribute to the first Israeli astronaut.[65] The school’s symbol shows the planet Earth with an aircraft orbiting around it.[66]

The National Naval Medical Center dedicated Laurel Clark Memorial Auditorium on July 11, 2003.[67] Gamma Phi Beta sorority, of which Clark was a member, created the Laurel Clark Foundation in her honor.[68]

PS 58 in Staten Island, New York, was named Space Shuttle Columbia School in honor of the failed mission.[69]

Effect on space programs[edit]

Following the loss of Columbia, the space shuttle program was suspended.[48] The further construction of the International Space Station (ISS) was also delayed, as the space shuttles were the only available delivery vehicle for station modules. The station was supplied using Russian unmanned Progressships, and crews were exchanged using Russian-manned Soyuz spacecraft, and forced to operate on a skeleton crew of two.[70][71]

Less than a year after the accident, President Bush announced the Vision for Space Exploration, calling for the space shuttle fleet to complete the ISS, with retirement by the year 2010 following the completion of the ISS, to be replaced by a newly developed Crew Exploration Vehicle for travel to lunar orbit and landing and to Mars.[72] NASA planned to return the space shuttle to service around September 2004; that date was pushed back to July 2005.

On July 26, 2005, at 10:39 am EST, Space Shuttle Discovery cleared the tower on the “Return to Flight” mission STS-114, marking the shuttle’s return to space. Overall the STS-114 flight was highly successful, but a similar piece of foam from a different portion of the tank was shed, although the debris did not strike the Orbiter. Due to this, NASA once again grounded the shuttles until the remaining problem was understood and a solution implemented.[48] After delaying their re-entry by two days due to adverse weather conditions, Commander Eileen Collins and Pilot James M. Kelly returned Discovery safely to Earth on August 9, 2005. Later that same month, the external tank construction site at Michoud was damaged by Hurricane Katrina.[73] At the time, there was concern that this would set back further shuttle flights by at least two months and possibly more.

The actual cause of the foam loss on both Columbia and Discovery was not determined until December 2005, when x-ray photographs of another tank showed that thermal expansion and contraction during filling, not human error, caused cracks that led to foam loss. NASA’s Hale formally apologized to the Michoud workers who had been blamed for the loss of Columbia for almost three years.[13]

The second “Return to Flight” mission, STS-121, launched on July 4, 2006, at 2:37:55 pm (EDT), after two previous launches were scrubbed because of lingering thunderstorms and high winds around the launch pad. The launch took place despite objections from its chief engineer and safety head. This mission increased the ISS crew to three. A 5-inch (130 mm) crack in the foam insulation of the external tank gave cause for concern; however, the Mission Management Team gave the go for launch.[74] Space Shuttle Discovery touched down successfully on July 17, 2006 at 9:14:43 am (EDT) on Runway 15 at the Kennedy Space Center.

On August 13, 2006, NASA announced that STS-121 had shed more foam than they had expected. While this did not delay the launch for the next mission,STS-115, originally set to lift off on August 27,[75] the weather and other technical glitches did, with a lightning strike, Hurricane Ernesto and a faulty fuel tank sensor combining to delay the launch until September 9. On September 19, landing was delayed an extra day to examine Atlantis after objects were found floating near the shuttle in the same orbit. When no damage was detected, Atlantis landed successfully on September 21.

The Columbia Crew Survival Investigation Report released by NASA on December 30, 2008, made further recommendations to improve a crew’s survival chances on future space vehicles, such as the (planned) Orion spacecraft. These include improvements in crew restraints, finding ways to deal more effectively with catastrophic cabin depressurization, more “graceful degradation” of vehicles during a disaster so that crews will have a better chance at survival, and automated parachute systems.[52]

Sociocultural aftermath[edit]

Fears of terrorism[edit]

After the shuttle’s breakup, there were some initial fears that terrorists might have been involved, but no evidence of that has ever surfaced.[76] Security surrounding the launch and landing of the space shuttle had been increased because the crew included the first Israeli astronaut.[77] The Merritt Island launch facility, like all sensitive government areas, had increased security after the September 11 attacks.

 

 

 



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse
    The contributor has disabled comments for this story
    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.