Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Last Hour:
Last 24 Hours:

Never Seen Before Undersea Light Show Amazes Scientists

Friday, January 10, 2014 8:25
% of readers think this story is Fact. Add your two cents.
“There’s a whole light show going on down there, and people never see it.”

A green biofluorescent chain catshark (Scyliorhinus retifer). Scientists already knew that some marine organisms fluoresce, including corals and jellyfish, but the NSF-funded study, The Covert World of Biofluorescence is the first reported evidence of widespread biofluorescence among fishes.

Credit: J. Sparks, D. Gruber, and V. Pieribone

With the help of blue light and special long-pass filters, scientists have uncovered more of the undersea world’s secrets. A study published today describes more than 180 species of marine fishes that glow in different colors and patterns, via a process known as biofluorescence.

Scientists already knew that some marine organisms fluoresce, including corals and jellyfish, but this is the first reported evidence of widespread biofluorescence among fishes.

“There’s a whole light show going on down there, and people never see it,” said one of the study’s principal authors, John Sparks, a curator in the American Museum of Natural History’s (AMNH) Department of Ichthyology.Researchers discovered a rich diversity of fluorescent patterns and colors in marine fishes, as exemplified here. A) swell shark (Cephaloscyllium ventriosum); B) ray (Urobatis jamaicensis); C) sole (Soleichthys heterorhinos); D) flathead (Cociella hutchinsi); E) lizardfish (Saurida gracilis); F) frogfish (Antennarius maculatus); G) stonefish (Synanceia verrucosa); H) false moray eel (Kaupichthys brachychirus); I) Chlopsidae (Kaupichthys nuchalis); J) pipefish (Corythoichthys haematopterus); K) sand stargazer (Gillellus uranidea); L) goby (Eviota sp.); M) Gobiidae (Eviota atriventris); N) surgeonfish (Acanthurus coeruleus, larval); O) threadfin bream (Scolopsis bilineata).

Credit: PLOS ONE

The findings, published in PLOS ONE, will surely lead to new investigations of the function of biofluorescence as well as research related to the evolution and diversification of marine fishes. They could also lead to the discovery of new fluorescent proteins useful in cancer, brain and other biomedical research.

Biofluorescence is a natural process in which organisms absorb light at one intensity, or wavelength, and emit it at a different, usually lower, level–seen as a different color. In the ocean, the researchers found, fishes absorb the higher energy blue light around them and emit it in glowing greens, reds and oranges.

How did the scientists make the discovery? While taking and processing images of biofluorescent coral for an NSF-funded traveling museum exhibit: Creatures of Light: Nature’s Bioluminescence, Sparks and AMNH research associate David Gruber (CUNY) were amazed to see, in the background of one image, an eel glowing bright green.

To further explore the phenomenon, they enlisted the help of other researchers and embarked on a series of dive expeditions. Deep underwater near the Bahamas and later the Solomon Islands, the divers shone blue lights on the ocean floor to stimulate intense biofluorescence in fishes. To see through the obliterating veil of blue light, they wore green visors over their masks and equipped their underwater camera lenses with special long-pass filters. (The researchers note that many fishes have long-pass filters in their eyes, which would allow them to see fluorescent displays.)

A red fluorescing scorpionfish (Scorpaenopsis papuensis) perched on red fluorescing algae at night in the Solomon Islands.

Credit: PLOS ONE

With the resulting images, analyses of some 12,000 specimens the team collected over four expeditions, as well as studies after hours at public aquariums, the research team discovered that biofluorescence is common throughout the tree of life for fishes. The researchers identified biofluorescence in 16 orders, 50 families, 105 genera and more than 180 species of fishes. These include the two main fish groups: cartilaginous (sharks and rays) and bony fishes (eels, lizardfishes, gobies, flatfishes).

“We know now [biofluorescence] is considerably widespread and phenotypically variable in marine fishes,” said Sparks. The findings “in essence give us a road map to do fine-scale studies within certain groups to learn more about function” of biofluorescence.

Form and function

Fish fluoresce in a wide range of patterns–from simple red/orange coloration to green eye rings to more complex, species-specific patterns of interspersed fluorescent elements on the head, jaws, fins, flank and ventrum. In some cases, the fish’s entire body fluoresced, including internally. The patterns were most common and variable in fishes that had cryptic coloration, or camouflage, such as eels, gobies and lizardfishes.

A triplefin blennie (Enneapterygius sp.) under white light (above) and blue light (below). Scientists already knew that some marine organisms fluoresce, including corals and jellyfish, but the NSF-funded study, The Covert World of Biofluorescence is the first reported evidence of widespread biofluorescence among fishes.

Credit: J. Sparks and D. Gruber

It was fascinating to observe major fluorescence pattern and color differences in closely-related species that otherwise look quite similar, said Sparks. Certain closely-related species of lizardfish and gobies, for example, look almost identical under white light, but strikingly different fluorescing under the filtered blue light.

Such findings could mean that fishes use biofluorescence to communicate with other species–differentiating themselves, for example–without signaling predators. This ability could be especially useful during mating rituals under a full moon, when fish are vulnerable to predators.

New protein source?

The AMNH research opens the door to new studies that could yield new proteins for use in biomedical research.

“The discovery of green fluorescent protein in a hydrozoan jellyfish in the 1960s has provided a revolutionary tool for modern biologists, transforming our study of everything from the AIDS virus to the workings of the brain,” said co-lead author Gruber. “This study suggests that fish biofluorescence might be another rich reservoir of new fluorescent proteins.”

Researcher David Gruber searching for new biofluorescent organisms off Hele Island, Solomon Islands, with a camera system and blue lights.
Researcher David Gruber under water
Credit: Ken Corben

Fluorescent proteins can be injected and used to track cellular functions, neural activity and more.

The AMNH-led team, funded in part by NSF, included researchers from the University of Kansas, University of Haifa, Israel and Yale University.

Contacts and sources:
National Science Foundation
Jacqueline Conciatore
Edyta Greer
John Sparks
David Gruber
CUNY Baruch College
American Museum Natural History  

Citation: The Covert World of Fish Biofluorescence on PLOS ONE: a related video:


We encourage you to Share our Reports, Analyses, Breaking News and Videos. Simply Click your Favorite Social Media Button and Share.

Report abuse


Your Comments
Question Razz Sad Evil Exclaim Smile Redface Biggrin Surprised Eek Confused Cool LOL Mad Twisted Rolleyes Wink Idea Arrow Neutral Cry Mr. Green

Total 12 comments
  • SkareCro

    Cool story! Thanks for sharing.

  • Geeper

    Awesome photos.

  • Osimandias

    Glowing from radiation. :mrgreen:

  • Project Spacebook

    why does it have to amaze only scientist’s???? didnt any non scientist’s witness it????

  • soggiesloshie

    Lmao its not due to radiation, certin fish and corals were discover b4 the radiation. Js … this s very cool

  • Naomi

    The most amazing thing in the ocean by far, is the mantis shrimp.

  • Ozzie_Thinker

    As the “inner earth” doesn’t exist, there are no land creatures like this.


    • Bronson

      I am not sure if I understand your comment. Although there are land creatures that have florescent attributes. 1 quick example is the Light Bug that flys at night emitting a light with its tail. There are many others, frogs, fresh water creatures, etc.
      Also who knows about the inner earth, that is kinda tough to digest, although very large caverns are real.

      • Anonymous

        Lightning bug. Are you both from another country? :lol:

  • muckracker1

    Delightful!!!! need to share everywhere! :lol:

  • N. Morgan

    Amazing!! :grin:

  • Anonymous

    Why do they think this is so amazing? How do you think they find evidence of blood at a crime scene? A blue (or black) light. Many things in the biological world fluoresce. Whoop dee doo.

Top Stories
Recent Stories


Top Global

Top Alternative



Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.