Visitors Now:
Total Visits:
Total Stories:
Profile image
Story Views

Last Hour:
Last 24 Hours:

The Sun’s coronal tail wags its photospheric dog

Thursday, October 13, 2016 5:31
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Solar flare erupting from a sunspot [image credit:]

Solar flare erupting from a sunspot [image credit:]

Researchers have unearthed a cause-and-effect conundrum for solar physicists, involving solar flares. reports.

Solar physicists have long viewed the rotation of sunspots as a primary generator of solar flares – the sudden, powerful blasts of electromagnetic radiation and charged particles that burst into space during explosions on the sun’s surface. Their turning motion causes energy to build up that is released in the form of flares.

But a team of NJIT scientists now claims that flares in turn have a powerful impact on sunspots, the visible concentrations of magnetic fields on the sun’s surface, or photosphere. In a paper published in Nature Communications this week, the researchers argue that flares cause sunspots to rotate at much faster speeds than are usually observed before they erupt.

Their observations, based on high-resolution images captured through NJIT’s 1.6 meter New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), come as something of a surprise. The sun’s outer layer, or corona, where flares are released, has a plasma density about a hundred million times smaller than that of the photosphere.

“It’s analogous to the tail wagging the dog. The lower-density regions are much less energetic and forceful,” said Chang Liu, a research professor of physics at NJIT and the principal author of the study, “Flare differentially rotates sunspot on Sun’s surface.”

“We do think the rotation of sunspots builds up magnetic energy that is released in form of solar flares, but we have also observed conclusively that flares can cause sunspots to rotate about 10 times faster,” he added. “This highlights the powerful, magnetic nature of solar flares.”

Haimin Wang, a distinguished professor of physics at NJIT and a co-author of the paper, said the observations will prompt scientists to revisit the mechanisms of flares – and the basic physics of the Sun – in a fundamental way.

“We used to think that the surface’s magnetic evolution drives solar eruptions. Our new observations suggest that disturbances created in the solar outer atmosphere can also cause direct and significant perturbations on the surface through magnetic fields, a phenomenon not envisioned by any major contemporary solar eruption models. This has immediate and far-reaching implications in understanding energy and momentum transportation in eruptions on the Sun and other stars,” Wang said. “We will continue to study, and possibly re-interpret, the relationship between the different layers of the Sun.”

Full report: The Sun’s coronal tail wags its photospheric dog |

Report abuse


Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories



Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.