Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

New Found Microbe Eats Methane and Iron

Thursday, November 3, 2016 7:46
% of readers think this story is Fact. Add your two cents.

(Before It's News)

A microbe that ‘eats’ both methane and iron: microbiologists have long suspected its existence, but were not able to find it – until now. Researchers at Radboud University and the Max Planck Institute for Marine Microbiology in Bremen discovered a microorganism that couples the reduction of iron to methane oxidation, and could thus be relevant in controlling greenhouse gas emissions worldwide.

The balance between methane-producing and -consuming processes has a major effect on the worldwide emission of this strong greenhouse gas into our atmosphere. The team of microbiologists and biogeochemists now discovered an archaeon – the other branch of ancient prokaryotes besides bacteria – of the order Methanosarcinales that uses iron to convert methane into carbon dioxide. One of the bioreactors, in which Kartal and his colleagues found the rust-munching microbes.

B4INREMOTE-aHR0cHM6Ly80LmJwLmJsb2dzcG90LmNvbS8tbGV2SUdxV3ZJZFUvV0J0RkdObzFzUEkvQUFBQUFBQUJRSG8veFZROUxvX24tOEVmYmxrdkVDX1hyQlZVMDdPbGU0VlFRQ0xjQi9zNjQwL3pvb20lMkIlMjUyODglMjUyOS5qcGc=
Credit: © B. Kartal
During that process, reduced iron become available to other bacteria. Consequently, the microorganism initiates an energy cascade influencing the iron and methane cycle and thus methane emissions, describe first authors Katharina Ettwig (Radboud University) and Baoli Zhu (Hemholtz Zentrum München) in the paper.
Application in wastewater treatment

Besides, these archaea have another trick up their sleeve. They can turn nitrate into ammonium: the favourite food of the famous anammox bacteria that turn ammonium into nitrogen gas without using oxygen. “This is relevant for wastewater treatment”, says Boran Kartal, a microbiologist who recently moved from Radboud University to the Max Planck Institute in Bremen. 

“A bioreactor containing anaerobic methane and ammonium oxidizing microorganisms can be used to simultaneously convert ammonium, methane and oxidized nitrogen in wastewater into harmless nitrogen gas and carbon dioxide, which has much lower global warming potential.” The same process could also be important in paddy fields, for example, which account for around one fifth of human-related emissions of methane.

Closer than expected

While there have been numerous indications that such iron-dependent methane oxidizers existed, researchers have never been able to isolate them. Surprisingly, they were right in front of our doorstep: “After years of searching, we found them in our own sample collection”, says microbiologist Mike Jetten of Radboud University with a smile. “We eventually discovered them in enrichment cultures from the Twentekanaal in The Netherlands that we’ve had in our lab for years.”

“Based on the genetic blueprint of these microorganisms”, Kartal adds, “we hypothesized that they could convert particulate iron – basically rust – coupled to methane oxidation. So we tested our hypothesis in the lab – and these organisms did the trick.” In the next step, Kartal wants to look closer into the details of the process. “These findings fill one of the remaining gaps in our understanding of anaerobic methane oxidation. Now we want to further investigate which protein complexes are involved in the process.”

Billions of years ago

The newly discovered process could also lead to new insights into the early history of our planet. Already 4 to 2.5 billion years ago, Methanosarcinalesarchaea might have abundantly thrived under the methane-rich atmosphere in the ferruginous (iron holding) Archaean oceans,. More information on the metabolism of this organism can therefore shed new light on the long-standing discussion of the role of iron metabolism on early earth.

Contacts and sources:
Dr. Boran Kartal
Max Planck Institute for Marine Microbiology, Bremen

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.