Online:
Visits:
Stories:
Profile image
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Getting quantitative about violations of CP, T, and P

Monday, March 20, 2017 3:07
% of readers think this story is Fact. Add your two cents.

(Before It's News)

The twistor lift of TGD led to the introduction of Kähler form also in M4 factor of imbedding space M4×CP2. The moduli space of causal diamonds (CDs) introduced already early allow to save Poincare invariance at the level of WCW. One of the very nice things is that the self-duality of J(M4) leads to a new mechanism of breaking for P,CP, and T in long scales, where these breakings indeed take place. P corresponds to chirality selection in living matter, CP to matter antimatter asymmetry and T could correspond to preferred arrow of clock time. TGD allows both arrows but T breaking could make other arrow dominant. Also the hierarchy of Planck constant is expected to be important.

Can one say anything quantitative about these various breakings?

  1. J(M4) is proportional to Newton’s constant G in the natural scale of Minkowski coordinates defined by twistor sphere of T(M4). Therefore CP breaking is expected to be proportional to lP2/R2 or to its square root lP/R. The estimate for lP/R is X== lP/R≈ 2-12≈ 2.5× 10-4.

The determinant of CKM matrix is equal to phase factor by unitarity (UU=1) and its imaginary part characterizes CP breaking. The imaginary part of the determinant should be proportional to the Jarlskog invariant J= +/- Im(VusVcbV*ub V*cs) characterizing CP breaking of CKM matrix (see this).

The recent experimental estimate is J≈ 3.0× 10-5. J/X≈ 0 .1 so that there is and order of magnitude deviation. Earlier experimental estimate used in p-adic mass calculations was by almost order of magnitude larger consistent with the value of X. For B mesons CP breading is about 50 times larger than for kaons and it is clear that Jarlskog invariant does nto distinguish between different meson so that it is better to talk about orders of magnitude only.

The parameter used to characterize matter antimatter asymmetry (see this) is the ratio R=[n(B-n(B*)]/n(γ)) ≈ 9× 10-11 of the difference of baryon and antibaryon densities to photon density in cosmological scales. One has X3 ≈ 1.4 × 10-11, which is order of magnitude smaller than R.

  • What is interesting that P is badly broken in long length scales as also CP. The same could be true for T. Could this relate to the thermodynamical arrow of time? In ZEO state function reductions to the opposite boundary change the direction of clock time. Most physicist believe that the arrow of thermodynamical time and thus also clock time is always the same. There is evidence that in living matter both arrows are possible. For instance, Fantappie has introduced the notion of syntropy as time reversed entropy. This suggests that thermodynamical arrow of time could correspond to the dominance of the second arrow of time and be due to self-duality of J(M4) leading to breaking of T. For instance, the clock time spend in time reversed phase could be considerably shorter than in the dominant phase. A quantitative estimate for the ratio of these times might be given some power of the the ratio X =lP/R.
    For background see chapter Some questions related to the twistor lift of TGD of “Towards M-matrix” or the article with the same title.

For a summary of earlier postings see Latest progress in TGD.

Articles and other material related to TGD.



Source: http://matpitka.blogspot.com/2017/03/getting-quantitative-about-violations.html

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories
 

Featured

 

Top Global

 

Top Alternative

 

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.