Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Scientists Watch 'Artificial Atoms' Assemble into Perfect Lattices with Many Uses

% of readers think this story is Fact. Add your two cents.


A serendipitous discovery lets researchers spy on this self-assembly process for the first time with SLAC’s X-ray synchrotron. What they learn will help them fine-tune precision materials for electronics, catalysis and more.
 Some of the world’s tiniest crystals are known as “artificial atoms” because they can organize themselves into structures that look like molecules, including “superlattices” that are potential building blocks for novel materials.

Now scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have made the first observation of these nanocrystals rapidly forming superlattices while they are themselves still growing. What they learn will help scientists fine-tune the assembly process and adapt it to make new types of materials for things like magnetic storage, solar cells, optoelectronics and catalysts that speed chemical reactions.

An illustration shows nanocrystals assembling into ordered ‘superlattices’ – a process that a SLAC/Stanford team was able to observe in real time with X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL). They discovered that this assembly takes just a few seconds when carried out in hot solutions. The results open the door for rapid self-assembly of nanocrystal building blocks into complex structures with applications in optoelectronics, solar cells, catalysis and magnetic materials.

Credit: Greg Stewart/SLAC National Accelerator Laboratory

The key to making it work was the serendipitous discovery that superlattices can form superfast – in seconds rather than the usual hours or days – during the routine synthesis of nanocrystals. The scientists used a powerful beam of X-rays at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) to observe the growth of nanocrystals and the rapid formation of superlattices in real time.

A paper describing the research, which was done in collaboration with scientists at the DOE’s Argonne National Laboratory, was published today in Nature.

“The idea is to see if we can get an independent understanding of how these superlattices grow so we can make them more uniform and control their properties,” said Chris Tassone, a staff scientist at SSRL who led the study with Matteo Cargnello, assistant professor of chemical engineering at Stanford

Tiny Crystals with Outsized Properties

Scientists have been making nanocrystals in the lab since the 1980s. Because of their tiny size –they’re billionths of a meter wide and contain just 100 to 10,000 atoms apiece — they are governed by the laws of quantum mechanics, and this gives them interesting properties that can be changed by varying their size, shape and composition. For instance, spherical nanocrystals known as quantum dots, which are made of semiconducting materials, glow in colors that depend on their size; they are used in biological imaging and most recently in high-definition TV displays.

A lab in the Stanford Chemical Engineering Department where nanocrystals are grown. Experiments at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) were able to observe the simultaneous growth of nanocrystals and superlattices for the first time.

Credit: Dawn Harmer/SLAC National Accelerator Laboratory

In the early 1990s, researchers started using nanocrystals to build superlattices, which have the ordered structure of regular crystals, but with small particles in place of individual atoms. These, too, are expected to have unusual properties that are more than the sum of their parts.

But until now, superlattices have been grown slowly at low temperatures, sometimes in a matter of days.

That changed in February 2016, when Stanford postdoctoral researcher Liheng Wu serendipitously discovered that the process can occur much faster than scientists had thought.

‘Something Weird Is Happening’

He was trying to make nanocrystals of palladium – a silvery metal that’s used to promote chemical reactions in catalytic converters and many industrial processes – by heating a solution containing palladium atoms to more than 230 degrees Celsius. The goal was to understand how these tiny particles form, so their size and other properties could be more easily adjusted. 

Stanford Assistant Professor Matteo Cargnello at a lab in the Stanford Chemical Engineering Department where nanocrystals are grown. Cargnello and Chris Tassone, a staff scientist at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), led a team that discovered how superlattices can grow unexpectedly fast – in seconds, rather than hours or days – during routine nanocrystal synthesis.

Credit: Dawn Harmer/SLAC National Accelerator Laboratory
The team added small windows to a reaction chamber about the size of a tangerine so they could shine an SSRL X-ray beam through it and watch what was happening in real time.

“It’s kind of like cooking,” Cargnello explained. “The reaction chamber is like a pan. We add a solvent, which is like the frying oil; the main ingredients for the nanocrystals, such as palladium; and condiments, which in this case are surfactant compounds that tune the reaction conditions so you can control the size and composition of the particles. Once you add everything to the pan, you heat it up and fry your stuff.”

Wu and Stanford graduate student Joshua Willis expected to see the characteristic pattern made by X-rays scattering off the tiny particles.They saw a completely different pattern instead.

“So something weird is happening,” they texted their advisor.

The something weird was that the palladium nanocrystals were assembling into superlattices.

A Balance of Forces

At this point, “The challenge was to understand what brings the particles together and attracts them to each other but not too strongly, so they have room to wiggle around and settle into an ordered position,” said Jian Qin, an assistant professor of chemical engineering at Stanford who performed theoretical calculations to better understand the self-assembly process.

The experimental set-up at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) where scientists used an X-ray beam to observe superlattices forming during the synthesis of nanocrystals for the first time. The vessel where the reactions took place is at bottom center, wrapped in gold heating tape that boosted the temperature inside to more than 230 degrees Celsius.
Credit: Liheng Wu/Stanford University

Once the nanocrystals form, what seems to be happening is that they acquire a sort of hairy coating of surfactant molecules. The nanocrystals glom together, attracted by weak forces between their cores, and then a finely tuned balance of attractive and repulsive forces between the dangling surfactant molecules holds them in just the right configuration for the superlattice to grow.

To the scientists’ surprise, the individual nanocrystals then kept on growing, along with the superlattices, until all the chemical ingredients in the solution were used up, and this unexpected added growth made the material swell. The researchers said they think this occurs in a wide range of nanocrystal systems, but had never been seen because there was no way to observe it in real time before the team’s experiments at SSRL.

“Once we understood this system, we realized this process may be more general than we initially thought,” Wu said. “We have demonstrated that it’s not only limited to metals, but it can also be extended to semiconducting materials and very likely to a much larger set of materials.”

The team has been doing follow-up experiments to find out more about how the superlattices grow and how they can tweak the size, composition and properties of the finished product.

Ian Salmon McKay, a graduate student in chemical engineering at Stanford, and Benjamin T. Diroll, a postdoctoral researcher at Argonne National Laboratory’s Center for Nanoscale Materials, also contributed to the work.

SSRL and CNM are DOE Office of Science User Facilities, and the research was funded by the DOE Office of Science and by a Laboratory Directed Research and Development grant from SLAC.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

Contacts and sources: 
 SLAC National Accelerator Laboratory
 


Source: http://www.ineffableisland.com/2017/08/scientists-watch-artificial-atoms.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 3 comments
    • raburgeson

      They are catching up to your above top secret nano tech. I warned 2 years ago that if you don’t bring out the science and patent some of it you will loose it, so now you loose this! The world is about to make a leap with out you and we have hundreds of thousands in the world that will hack at it and wring everything out of it that can be got, and you get nothing!

    • Zabwe`

      There is no photographic evidence an atom exists……Molecular Fractal Programming….Big hero 6………Hooray for Hollywood………
      Hiro decides to apply to the university. To enroll, he signs up for the school’s science fair and presents his project: microbots, swarms of tiny robots that can link together in any arrangement imaginable using a neuro-cranial transmitter. Hiro declines an offer from Alistair Krei, CEO of Krei Tech, to market the microbots

      • Zabwe`

        The three states of electricity – AC -DC and the third state – Static – Generated by Sound………PoW?

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.