Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

What's Killing Trees During Droughts? Scientists Give New Answers

% of readers think this story is Fact. Add your two cents.


As the number of droughts increases globally, scientists are working to develop predictions of how future parched conditions will affect plants, especially trees.

New results published today in the journal Nature Ecology and Evolution by 62 scientists, led by Henry Adams at Oklahoma State University, synthesized research from drought manipulation studies and revealed the mechanisms by which tree deaths happen.

“Understanding drought is critical to managing our nation’s forests,” says Lina Patino, a section head in the National Science Foundation’s (NSF) Division of Earth Sciences, which co-funded the study through its Critical Zone Observatories program. “This research will help us more accurately predict how trees will respond to environmental stresses, whether drought, insect damage or disease.”

Ghostly sentinels: trees in Senegal that have died in a drought.

Credit:  FAO

Adds Liz Blood, director of NSF’s MacroSystems Biology program, which co-funded the research, “Droughts are simultaneously happening over large regions of the globe, affecting forests with very different trees. The discovery of how droughts cause mortality in trees, regardless of the type of tree, allows us to make better regional-scale predictions of droughts’ effects on forests.”

How trees respond to drought is important for models used to predict climate change. Plants take up a large portion of the carbon dioxide (CO2) in the atmosphere — fewer trees means more CO2.

Sudden large-scale changes in plant populations, such as the tree die-offs observed worldwide in recent decades, could affect the rate at which climate changes.

Trees below Mount Pelion East, Tasmania, an area where forests have been replaced by shrubs.

 

Credit: Melanie Zeppel, University of Sydney

Current global vegetation models have faced challenges in producing consistent estimates of plant CO2 uptake, scientists say. The predictions vary widely depending on assumptions about how plants respond to climate.

One idea for improving the models is to base forest responses to climate change on how trees die in response to heat, drought and other stresses. But progress has been limited by disagreement over a central question: What, exactly, causes tree deaths?

In some cases, the deaths are a result of carbon starvation, in which trees close their pores, essentially starving themselves by blocking the entry of carbon, which is needed for photosynthesis. Or the culprit is hydraulic failure: the inability of a plant to move water from roots to leaves.

Adams explains that 99 percent of the water moving through a tree is used to keep stomata open. Stomata are the pores that let in carbon dioxide, allowing a tree to carry out photosynthesis.

Trees respond to the stress of drought by closing these pores. They then need to rely on stored sugars and starches to stay alive, and will die if these run out before a drought ends.

If a tree loses too much water too quickly, an air bubble (embolism) forms. The tree then has hydraulic failure and cannot transport water from the roots to the leaves, causing it to dry out and die.

Dead pinyon pines near Flagstaff, Arizona, following a severe drought and bark beetle outbreak.

Credit: Henry Adams

The scientists found that hydraulic failure is universal when trees die, while carbon starvation is a contributing factor roughly half the time.

“Our findings help improve the understanding of how trees die, important in the context of climate change,” says David Breshears of the University of Arizona, a co-author of the journal paper.

Adds Adams, “We produced a consensus view by bringing together many scientists with different perspectives.” By finding new answers to a basic question — what actually kills a tree in a drought? — researchers can focus on effective solutions.

Contacts and sources:
National Science Foundation (NSF)

#


Source: http://www.ineffableisland.com/2017/08/whats-killing-trees-during-droughts.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.