Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Why Does The Earth Have A Liquid Core?

% of readers think this story is Fact. Add your two cents.



“If you ever drop your keys into a river of molten lava, let ‘em go, because, man, they’re gone.” -Jack Handey

Take a look at our home planet, Earth, and one of the things you’ll notice is that over 70% of the surface is coated in water.


(Image credit: NASA / Apollo 17.)

We all know why this is, of course: it’s because the Earth’s oceans float atop the rocks and dirt that make up what we know as land.

This concept of floatation and buoyancy — where the less dense objects rise above the denser ones, which sink to the bottom — does much more than just explain the oceans.


This same principle that explains why ice floats on water, why a helium balloon rises through the atmosphere or why stones sink to the bottom of a lake, also explains why the Earth is layered the way it is.


(Image credit: Jean Anastasia.)

The least dense part of the Earth, the atmosphere, floats atop the watery oceans, which in turn float atop the Earth’s crust, which lies above the more dense mantle, which itself cannot sink down into the densest section of the Earth: the core.


(Image credit: education.com.)

Ideally, the most stable state the Earth could conceivably be in is one that was perfectly layered like an onion, with the densest elements all towards its center, with each outward layer progressively made up of less dense elements. In fact, each earthquake that occurs on Earth is actually the planet moving one step closer towards that ideal state.

And this explains the structure of not only the Earth, but all of the planets, if you remember where all of these elements came from in the first place.


(Image credit: Demetris Nicolaides.)

When the Universe was very young — only a few minutes old — practically the only elements that existed were hydrogen and helium. All the heavier ones were made in stars, and it was only when these stars died that these heavy elements were recycled back out into the Universe, allowing new generations of stars to form.


(Image credit: European Southern Observatory.)

But this time, a mix of all of these new elements — not just hydrogen and helium, but carbon, nitrogen, oxygen, silicon, magnesium, sulphur, iron and more — goes into forming not only new stars, but a protoplanetary disk around each of those stars.

The outward pressure from the newly forming star preferentially pushes the lighter elements out towards the outer parts of the solar system, while gravity causes instabilities in the disk to collapse and form what will become planets.


In the case of our Solar System, the four innermost worlds are the four densest planets in our Solar System, with Mercury being composed of the densest elements, all of which were unable to gravitationally hold on to large amounts of hydrogen and helium.

But the outer planets, being both more massive and farther away from the Sun (and hence receiving less radiation), managed to hang on to large amounts of these ultra-light elements, and formed gas giants.

Each of these worlds, much like the Earth, has — overall — the densest elements concentrated at the core, with lighter ones forming progressively less and less dense layers surrounding it.


It should come as no great surprise that iron, the most stable element and the heaviest element made in great abundance outside of supernovae, is the most abundant element in the Earth’s core. But it may surprise you to learn that, in between the solid inner core and the solid mantle, lies a liquid layer more than 2,000 kilometers thick: the Earth’s outer core.


(Image credit: Jeremy Kemp.)

Much like the disgusting gum your grandma used to carry around, the Earth has a huge liquid layer inside of it, containing 30% of its mass! The way we know that the outer core is liquid is quite brilliant: from the seismic waves produced from earthquakes!


(Image credit: Charles Sturt University.)

There are two different types of seismic waves produced in earthquakes: the primary compression wave, known as the P-wave, which works like a pulse through a slinky,


(Animations above and below, credit: Christophe Dang Ngoc Chan.)

and the secondary shear wave, known as the S-Wave, which works like waves on the surface of the sea.


Seismic monitoring stations all over the world are capable of picking up both P- and S-waves, but S-waves do not travel through liquid (they are attenuated, though), while P-waves not only do travel through liquid, they are refracted!


(Image credit: Vanessa Ezekowitz and USGS.)

As a result of this, we can learn that the Earth has a liquid outer core, a solid mantle exterior to that, and a solid core interior to it! So that’s how come the Earth has the heaviest, densest elements at its core, and how we know its outer core is a liquid layer.

But why is the outer core liquid? Like all elements, whether iron is solid, liquid, gas or “other” depends on both the pressure and temperature of the iron.


(Image credit: MIT.)

Iron, however, is much more complicated than many elements you may be used to. Sure, it can take on a variety of crystalline solid phases, as shown above, but we’re not interested in these normal pressures, shown in the diagram above. We’re going all the way down into the core of the Earth, where the pressure is millions of times what it is at sea level. What does the phase diagram look like for excessive pressures like that?

The wonderful thing about science is that even when you don’t know the answer off the top of your head, chances are, someone’s done the research where you can find the answer! In this case, Ahrens, Collins and Chen, 2001 have the answer we’re looking for!


(Figure 2 in their paper.)

While this diagram shows tremendous pressures — up to 120 GigaPascals — it’s important to remember that our atmosphere has only 0.0001 GigaPascals, while the inner core experiences pressures of an estimated 330-360 Gpa! The upper solid line represents the boundary between molten iron (above) and solid iron (below). But notice how, right at the very edge of the solid line, it takes a sharp upwards turn?

At 330 GigaPascals, it takes a tremendous temperature, something comparable to those found at the surface of the Sun, to melt iron. Those same temperatures, however, at lower pressures, will easily keep iron in its liquid phase, while at higher pressures will see iron form a solid. What does this mean for the core of the Earth?


(Image credit: platetectonics.com.)

It means that, as the Earth cools over time, its interior temperature drops, while its pressure remains constant. In other words, when the Earth first formed, it’s very likely that the entire core was liquid, and as it continues to cool, the inner core continues to grow! And as this happens, because solid iron has a higher density than liquid iron, the Earth will contract slightly, necessitating what?


Earthquakes!

So the Earth’s core is liquid because it’s hot enough to melt iron, but only in places where the pressure is low enough. As the Earth continues to age and cool, more and more of the core becomes solid, and when it does, the Earth shrinks a little bit!

If we want to look far into the future, we can expect to eventually acquire features like those found on Mercury!


(Image credit: Walter Myers.)

Because it’s so small, Mercury has already cooled and contracted a tremendous amount, and has hundred-mile-long cracks in it from where it was forced to contract due to this cooling!

So why does the Earth have a liquid core? Because it hasn’t finished cooling yet! And every earthquake you feel is the Earth getting just a little bit closer to its final, cooled-off, solid-all-the-way-through state!

(Don’t worry, though, the Sun will explode and you and everyone you know will be dead for a really long time before that ever happens!) Read the comments on this post…

Read more at Starts With A Bang


Source:



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 2 comments
    • Justin

      Earth does not have a liquid core. There is probably liquid closer to the core than we are, but the core is not liquid. Anyone?

    • cyberkahuna

      I think the core is a gooey center with a lot of different flavor rings. Not unlike the everlasting gobstoper described by Willie Wonka. You must agree it’s a whole lot better than our moon which everyone knows is made of cheese……

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.