Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

‘Cosmic Lantern’ Could Help Us Understand the Fate of the Universe

% of readers think this story is Fact. Add your two cents.


New research has provided a deeper insight into emission line galaxies, used in several ongoing and upcoming surveys, to help us further understand the composition and fate of the Universe.

The quest to determine the nature of both dark matter and dark energy has led scientists to adopt new tracers of the large-scale structure of the Universe, such as emission line galaxies. These galaxies present strong emission lines from the gas heated up by newly formed stars.

Lead author of the study, Dr Violeta Gonzalez-Perez from the University of Portsmouth’s Institute of Cosmology and Gravitation, said: “Galaxies are cosmic lanterns that show small patches of cosmic history, informing us of the changes in the space-time fabric of the Universe. The strong formation of new stars in galaxies leave a characteristic imprint in their spectra that allows for a precise determination of their distance.

“Moreover, as young stars are very bright, galaxies with a strong star formation can be visible further back in cosmic time. These are the two characteristics that make emission line galaxies excellent cosmological tracers for a long time span.”

However, current emission line galaxy samples are small and their characteristics are not well understood. Computational modelling is the only way to attempt to understand all the processes involved in the formation and evolution of these galaxies.

The image shows a slice of a numerical model for dark matter (grey points) and galaxies. Two types of galaxies are shown: bright emission line galaxies (filled circles) and those galaxies hosted by gravitational potentials above a threshold such that the number density equals that of the emission line galaxies (open circles). This figure illustrates that emission line galaxies trace different features from the cosmic web than galaxies selected by either their stellar mass or the strength of the gravitational potential where they have formed.

Credit: University of Portsmouth

Astronomers from the University of Portsmouth’s world-leading Institute of Cosmology and Gravitation (ICG) explored the characteristics of emission line galaxies through experiments on DiRAC’s (Distributed Research utilising Advanced Computing) national supercomputing facility at Durham University.

The computational experiments were concentrated around the time when the Universe went from being matter dominated to becoming dark energy dominated as it is now. They found that most emission line galaxies live at the centres of gravitational potential wells, with masses equivalent to eleven billion of our suns. Current numerical models of formation and evolution of galaxies also show that emission line galaxies trace the underlying gravitational potentials in a different way to galaxies selected by their stellar mass.

The image shows the location of some the emission line galaxies observed in the study (green circles) against the images of a big patch of the sky as observed by The Dark Energy Camera Legacy Survey (DECaLS) http://legacysurvey.org/decamls/
Credit: University of Portsmouth
 
They then compared their results with the expectations from the SDSS-IV/eBOSS surveys and Dark Energy Spectroscopic Instrument (DESI). Both surveys aim to measure the effect of dark energy on the expansion of the Universe.

Dr Gonzalez-Perez said: “This comparison will improve our understanding of galaxy formation and evolution and allow scientists to benefit from a more realistic model for the mechanisms that produce emission line galaxies.”

 

Next summer, the SDSS-IV/eBOSS survey is expected to have the first cosmological results from these tracers. In the coming years, the Dark Energy Survey Instrument (DESI) will expand this usage of emission line galaxies as cosmological tracers. The DESI will see their first light in 2019 and it will measure the spectra of 35 million galaxies, which is eight times more than the current SDSS has proved. In 2021, Euclid will start collecting spectra for 50 million sources, solely focusing on emission line galaxies. The ICG is involved in both surveys.

The image shows nearby emission line galaxies NCG 4038 – 4039. The pink parts in this image are showing the light from the gas heated by newly formed stars.

Credit:NASA, ESA and The Hubble Heritage (STScl/AURA)-ESA/Hubble Collaboration.

 

The study, which is published in the Monthly Notices of the Royal Astronomical Society (published by Oxford University Press), involved researchers from the Universities of Portsmouth and Durham (UK), the Max Planck Institute for Extraterrestrial Physics (Germany), the Pontifical Catholic University of Chile and Centro de Estudios de Física del Cosmos de Aragón (Spain).

 

 

Contacts and sources:
University of Portsmouth

Citation: The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5 V Gonzalez-Perez J Comparat P Norberg C M Baugh S Contreras C Lacey N McCullagh A Orsi J Helly J Humphries Monthly Notices of the Royal Astronomical Society, Volume 474, Issue 3, 1 March 2018, Pages 4024–4038, https://doi.org/10.1093/mnras/stx2807
 


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 2 comments
    • 2QIK4U

      You seem to enjoy your physics like myself. Challenge…. What information has russia released since they announced the succesful deployment of thier artificial star four days before your backwards eclipse. Why is the sun now white? It used to be orange remember?

      • 2QIK4U

        California firestarter. Every president is a mason of one sect or an enemies but theyre all masons. Yes theres also seperate masonic female and black temples. No temples… Houses of deciept

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.