Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By New Energy And Fuel (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Improvements Coming To Oil & Gas Reserve Estimates

% of readers think this story is Fact. Add your two cents.


A Massachusetts Institute of Technology team of researchers has taken the first three-dimensional images of kerogen’s internal structure, with a level of detail more than 50 times greater than has been previously achieved. The images should allow more accurate predictions of how much oil or gas can be recovered from any given formation.

The fossil fuels that provide much of the world’s energy orginate in a type of rock known as kerogen, and the potential for recovering these fuels depends crucially on the size and connectedness of the rocks’ internal pore spaces.

Using a high-resolution system called electron tomography, researchers probed a tiny sample of kerogen to determine its internal structure. At left, the sample as seen from the outside, and at right, the detailed 3-D image of its internal pore structure. Image Credit: MIT. Click image for the largest view.

These new images should allow more accurate predictions of how much oil or gas can be recovered from any given formation. But this wouldn’t change the capability for recovering these fuels, but it could, for example, lead to better estimates of the recoverable reserves of natural gas, which is seen as an important transition fuel as the world tries to curb the use of coal and oil.

The findings have been published in the Proceedings of the National Academy of Science, in a paper by MIT Senior Research Scientist Roland Pellenq, MIT Professor Franz-Josef Ulm, and others at MIT, CNRS and Aix-Marseille Université (AMU) in France, and Shell Technology Center in Houston.

The team, which published results two years ago on an investigation of kerogen pore structure based on computer simulations, used a relatively new method called electron tomography to produce the new 3-D images, which have a resolution of less than 1 nanometer, or billionth of a meter. Previous attempts to study kerogen structure had never imaged the material below 50 nanometers resolution, Pellenq said.

Fossil fuels, as their name suggests, form when organic matter such as dead plants gets buried and mixed with fine-grained silt. As these materials get buried deeper, over millions of years the mix gets cooked into a mineral matrix interspersed with a mix of carbon-based molecules. Over time, with more heat and pressure, the nature of that complex structure changes.

The process, a slow pyrolysis, involves “cooking oxygen and hydrogen, and at the end, you get a piece of charcoal,” Pellenq explains. “But in between, you get this whole gradation of molecules,” many of them useful fuels, lubricants, and chemical feedstocks.

The new results show for the first time a dramatic difference in the nanostructure of kerogen depending on its age. Relatively immature kerogen (whose actual age depends of the combination of temperatures and pressures it has been subjected to) tends to have much larger pores but almost no connections among those pores, making it much harder to extract the fuel. Mature kerogen, by contrast, tends to have much tinier pores, but these are well-connected in a network that allow the gas or oil to flow easily, making much more of it recoverable, Pellenq explained.

The study also reveals that the typical pore sizes in these formations are so small that normal hydrodynamic equations used to calculate the way fluids move through porous materials won’t work. At this scale the material is in such close contact with the pore walls that interactions with the wall dominate its behavior. The research team thus had to develop new ways of calculating the flow behavior.

“There’s no fluid dynamics equation that works in these subnanoscale pores,” he said. “No continuum physics works at that scale.”

To get these detailed images of the structure, the team used electron tomography, in which a small sample of the material is rotated within the microscope as a beam of elecrons probes the structure to provide cross-sections at one angle after another. These are then combined to produce a full 3-D reconstruction of the pore structure. While scientists had been using the technique for a few years, they hadn’t applied it to kerogen structures until now. The imaging was carried out at the CINaM lab of CNRS and AMU, in France (in the group of Daniel Ferry), as part of a long-term collaboration with MultiScale Materials Science for Energy and Environment, the MIT/CNRS/AMU joint lab located at MIT.

“With this new nanoscale tomography, we can see where the hydrocarbon molecules are actually sitting inside the rock,” Pellenq said. Once they obtained the images, the researchers were able to use them together with molecular models of the structure, to improve the fidelity of their simulations and calculations of flow rates and mechanical properties. This could shed light on how production rates decline in oil and gas wells, and perhaps on how to slow that decline.

So far, the team has studied samples from three different kerogen locations and found a strong correlation between the maturity of the formation and its pore size distribution and pore void connectivity. The researchers now hope to expand the study to many more sites and to derive a robust formula for predicting pore structure based on a given site’s maturity.

This is highly interesting work. Of all the oil and gas discovered so far less than half has been recovered and marketed. Those reservoirs are found, infrastructure installed and connected to markets. Secondary and tertiary recovery are already very big businesses indeed.

So one has to wonder if the big private petroleum firms may or may not be at this point or beyond. These firms hire the best petroleum engineers in the world and petroleum engineers are all very bright folks indeed.

But the research is offering, out in the open, real basic information and importantly, perspective.


Source: https://newenergyandfuel.com/http:/newenergyandfuel/com/2018/11/28/improvements-coming-to-oil-gas-reserve-estimates/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.