Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By New Energy And Fuel (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

A Breakout Idea For Splitting Water For Hydrogen Fuel

% of readers think this story is Fact. Add your two cents.


Virginia Tech chemists are working on a new study that solves a key, fundamental barrier in the electrochemical water splitting process. Virginia Tech’s Lin Lab can demonstrate a new technique to reassemble, revivify, and reuse a catalyst that allows for energy-efficient water splitting.

A degraded electrocatalyst can be revivified under catalytic operating conditions by manipulating reversible phase segregation. Image Credit: Lin Lab, Virginia Tech. Click image for the largest view.

One proposed paradigm for shifting away from fossil fuels is the hydrogen economy, in which hydrogen gas powers society’s electrical needs. To mass produce hydrogen gas, some scientists are studying the process of splitting water – two hydrogen atoms and one oxygen atom – which would result in hydrogen fuel and breathable oxygen gas.

The future economy based on renewable and sustainable energy sources might utilize battery-powered cars, large-scale solar and wind farms, and energy reserves stored in batteries and chemical fuels. Although there are examples of sustainable energy sources in use already, scientific and engineering breakthroughs will determine the timeline for widespread adoption.

Feng Lin, an assistant professor of chemistry in the Virginia Tech College of Science, is focusing on energy storage and conversion research. This work is part of a new study published in the journal Nature Catalysis that solves a key, fundamental barrier in the electrochemical water splitting process where the Lin Lab demonstrates a new technique to reassemble, revivify, and reuse a catalyst that allows for energy-efficient water splitting. Chunguang Kuai, a former graduate student of Lin’s, is first author of the study with Lin and co-authors chemistry graduate students Zhengrui Xu, Anyang Hu, and Zhijie Yang.

The core idea of this study goes back to a subject in general chemistry classes: catalysts. These substances increase the rate of a reaction without being consumed in the chemical process. One way a catalyst increases the reaction rate is by decreasing the amount of energy needed for the reaction to commence.

Water may seem basic as a molecule made up of just three atoms, but the process of splitting it is quite difficult. But Lin’s lab has done so. Even moving one electron from a stable atom can be energy-intensive, but this reaction requires the transfer of four to oxidize oxygen to produce oxygen gas.

Lin explained. “In an electrochemical cell, the four-electron transfer process will make the reaction quite sluggish, and we need to have a higher electrochemical level to make it happen. With a higher energy needed to split water, the long-term efficiency and catalyst stability become key challenges.”

In order to meet that high energy requirement, the Lin Lab introduces a common catalyst called mixed nickel iron hydroxide (MNF) to lower the threshold. Water splitting reactions with MNF work well, but due to the high reactivity of MNF, it has a short lifespan and the catalytic performance decreases quickly.

Lin and his team discovered a new technique that would allow for periodic reassembling to MNF’s original state, thus allowing the process of splitting water to continue. (The team used fresh water in their experiments, but Lin suggested salt water – the most abundant form of water on Earth – could work as well.)

MNF has a long history with energy studies. When Thomas Edison tinkered with batteries more than a century ago, he also used the same nickel and iron elements in nickel hydroxide-based batteries. Edison observed the formation of oxygen gas in his nickel hydroxide experiments, which is bad for a battery, but in the case of splitting water, production of oxygen gas is the goal.

Kuai said, “Scientists have realized for a long time that the addition of iron into the nickel hydroxide lattice is the key for the reactivity enhancement of water splitting. But under the catalytic conditions, the structure of the pre-designed MNF is highly dynamic due to the highly corrosive environment of the electrolytic solution.”

During Lin’s experiments, MNF degrades from a solid form into metal ions in the electrolytic solution – a key limitation to this process. But Lin’s team observed that when the electrochemical cell flips from the high, electrocatalytic potential to a low, reducing potential, just for a period of two minutes, the dissolved metal ions reassemble into the ideal MNF catalyst. This occurs due to a reversal of the pH gradient within the interface between the catalyst and the electrolytic solution.

Lin noted, “During the low potential for two minutes, we demonstrated we not only get nickel and iron ions deposited back into the electrode, but mixing them very well together and creating highly active catalytic sites. This is truly exciting, because we rebuild the catalytic materials at the atomic length scale within a few nano-meter electrochemical interface.”

Another reason that the reformation works so well is that the Lin Lab synthesized novel MNF as thin sheets that are easier to reassemble than a bulk material.

To corroborate these findings, Lin’s team conducted synchrotron X-ray measurements at the Advanced Photon Source of Argonne National Laboratory and at Stanford Synchrotron Radiation Lightsource of SLAC National Accelerator Laboratory. These measurements use the same basic premise as the common hospital X-ray but on a much larger scale.

Kuai noted, “We wanted to observe what had happened during this entire process. We can use X-ray imaging to literally see the dissolution and redeposition of these metal irons to provide a fundamental picture of the chemical reactions.”

Synchrotron facilities require a massive loop, similar to the size of the Drillfield at Virginia Tech, that can perform X-ray spectroscopy and imaging at high speeds. This provides Lin high levels of data under the catalytic operating conditions. The study also provides insights into a range of other important electrochemical energy sciences, such as nitrogen reduction, carbon dioxide reduction, and zinc-air batteries.

Lin said in a wind up, “Beyond imaging, numerous X-ray spectroscopic measurements have allowed us to study how individual metal ions come together and form clusters with different chemical compositions. This has really opened the door for probing electrochemical reactions in real chemical reaction environments.”

Congratulations are in order for a great work idea and effort to find a shorter, better, cheaper, route to water splitting. This is sure to light up the hydrogen community. Even better is the processes and techniques the team has shown offer great ideas for further research. Its quite a contribution to science.

The post A Breakout Idea For Splitting Water For Hydrogen Fuel first appeared on New Energy and Fuel.


Source: https://newenergyandfuel.com/http:/newenergyandfuel/com/2020/09/08/a-breakout-idea-for-splitting-water-for-hydrogen-fuel/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.