Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By New Energy And Fuel (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Palladium May Solve Some Problems Of Superconducting

% of readers think this story is Fact. Add your two cents.


At issue is how can we produce the best superconductors that remain superconducting even at the highest possible temperatures and ambient pressure? Vienna University of Technology with collaboration from Japan show there is a ‘Goldilocks zone’ of superconductivity where palladium-based materials (‘palladates’) could be the solution.

A new age of superconductors may be about to begin: In the 1980s, many superconducting materials (called cuprates) were based on copper. Then, nickelates were discovered – a new kind of superconducting materials based on nickel.

It is one of the most exciting races in modern physics. In recent years, a new era of superconductivity has begun with the discovery of nickelates. These superconductors are based on nickel, which is why many scientists speak of the “nickel age of superconductivity research.” In many respects, nickelates are similar to cuprates, which are based on copper and were discovered in the 1980s.

Schematic image of the energy levels for copper (Cu2+), nickel (Ni+), palladium (Pd+) superconductors. Image Credit: TU Wien. For more information click the press release or study links.

Now a new class of materials is coming into play. In a cooperation between TU Wien and universities in Japan, it was possible to simulate the behavior of various materials more precisely on the computer than before. There is a “Goldilocks zone” in which superconductivity works particularly well. And this zone is reached neither with nickel nor with copper, but with palladium. This could usher in a new “age of palladates” in superconductivity research.

The results have been published in the scientific journal Physical Review Letters.

The search for higher transition temperatures

 At warm temperatures, superconductors behave very similar to other conducting materials. But when they are cooled below a certain “critical temperature,” they change dramatically, their electrical resistance disappears completely and suddenly they can conduct electricity without any loss. This limit, at which a material changes between a superconducting and a normally conducting state, is called the “critical temperature.”

Prof. Karsten Held from the Institute of Solid State Physics at TU Wien said, “We have now been able to calculate this “critical temperature” for a whole range of materials. With our modeling on high-performance computers, we were able to predict the phase diagram of nickelate superconductivity with a high degree of accuracy, as the experiments then showed later.”

Many materials become superconducting only just above absolute zero (-273.15°C), while others retain their superconducting properties even at much higher temperatures. A superconductor that still remains superconducting at normal room temperature and normal atmospheric pressure would fundamentally revolutionize the way we generate, transport and use electricity.

However, such a material has not yet been discovered. Nevertheless, high-temperature superconductors, including those from the cuprate class, play an important role in technology – for example, in the transmission of large currents or in the production of extremely strong magnetic fields.

Copper? Nickel? Or Palladium?

 The search for the best possible superconducting materials is difficult. There are many different chemical elements that come into question. You can put them together in different structures, you can add tiny traces of other elements to optimize superconductivity.

Prof. Held noted, “To find suitable candidates, you have to understand on a quantum-physical level how the electrons interact with each other in the material.”

This showed that there is an optimum for the interaction strength of the electrons. The interaction must be strong, but also not too strong. There is a “golden zone” in between that makes it possible to achieve the highest transition temperatures.

Palladates as the optimal solution

 This golden zone of medium interaction can be reached neither with cuprates nor with nickelates, but one can hit the bull’s eye with a new type of material: so-called palladates.

Prof. Held explained, “Palladium is directly one line below nickel in the periodic table. The properties are similar, but the electrons there are on average somewhat further away from the atomic nucleus and each other, so the electronic interaction is weaker.”

The model calculations show how to achieve optimal transition temperatures for palladium data. “The computational results are very promising,” commented Prof. Held. “We hope that we can now use them to initiate experimental research. If we have a whole new, additional class of materials available with palladates to better understand superconductivity and to create even better superconductors, this could bring the entire research field forward.”

***

This looks to be extremely good news. It reveals that the understanding of what goes on when superconductivity occurs is getting much better. Therein lies the path to a superconducted future.

The oncoming problem is that palladium isn’t a low cost element. Nor are there huge reserves known. One might keep in mind that demand for it hasn’t been measured in millions of tons either. So how this matter works out isn’t highly predictable just yet and it might be some time before good numbers are easily available.

Its fair to think that superconductivity will get to some commercial use one day. The question looks likely to be about the economic applications.

This is sure to increase the interest in metallurgy. The superconductivity research is still quite young. Design targets are getting better understanding. There is sure to be more progress and the breakthroughs more frequent. This technology is just getting started.

The post Palladium May Solve Some Problems Of Superconducting first appeared on New Energy and Fuel.


Source: https://newenergyandfuel.com/http:/newenergyandfuel/com/2023/05/23/palladium-may-solve-some-problems-of-superconducting/?utm_source=rss&utm_medium=rss&utm_campaign=palladium-may-solve-some-problems-of-superconducting


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.


Humic & Fulvic Liquid Trace Mineral Complex


HerbAnomic’s Humic and Fulvic Liquid Trace Mineral Complex is a revolutionary new Humic and Fulvic Acid Complex designed to support your body at the cellular level. Our product has been thoroughly tested by an ISO/IEC Certified Lab for toxins and Heavy metals as well as for trace mineral content. We KNOW we have NO lead, arsenic, mercury, aluminum etc. in our Formula.


This Humic & Fulvic Liquid Trace Mineral complex has high trace levels of naturally occurring Humic and Fulvic Acids as well as high trace levels of Zinc, Iron, Magnesium, Molybdenum, Potassium and more. There is a wide range of up to 70 trace minerals which occur naturally in our Complex at varying levels. We Choose to list the 8 substances which occur in higher trace levels on our supplement panel. We don’t claim a high number of minerals as other Humic and Fulvic Supplements do and leave you to guess which elements you’ll be getting.


Order Your Humic Fulvic for Your Family by Clicking on this Link, or the Banner Below.



Our Formula is an exceptional value compared to other Humic Fulvic Minerals because...


It’s OXYGENATED

It Always Tests at 9.5+ pH

Preservative and Chemical Free

Allergen Free

Comes From a Pure, Unpolluted, Organic Source

Is an Excellent Source for Trace Minerals

Is From Whole, Prehisoric Plant Based Origin Material With Ionic Minerals and Constituents

Highly Conductive/Full of Extra Electrons

Is a Full Spectrum Complex


Our Humic and Fulvic Liquid Trace Mineral Complex has Minerals, Amino Acids, Poly Electrolytes, Phytochemicals, Polyphenols, Bioflavonoids and Trace Vitamins included with the Humic and Fulvic Acid. Our Source material is high in these constituents, where other manufacturers use inferior materials.


Try Our Humic and Fulvic Liquid Trace Mineral Complex today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.