Read the story here. Advertise at Before It's News here.
Profile image
By Desdemona Despair (Reporter)
Contributor profile | More stories
Story Views
Last hour:
Last 24 hours:

Decreasing snow cover causes increasing methane production in frozen lakes

% of readers think this story is Fact. Add your two cents.

Desdemona Despair

25 January 2019 (Uppsala University) – New, unexpected consequences of climate change keep presenting themselves. A new study from Uppsala University and SLU shows that a decreased snow cover on frozen lakes in boreal forests may inhibit the activity of methane degrading bacteria beneath the ice, thereby causing an increased net production of methane, a powerful greenhouse greenhouse gas.

The climate debate often emphasizes the potential for boreal forests to act as carbon sinks. An important and sometimes overlooked factor in this regard, is the role played by the many small lakes present in such forests. A large part of the forests’ carbon cycle passes through the lakes, and considerable amounts of carbon are released as carbon dioxide to the atmosphere. Such lakes may also produce other greenhouse gases, such as methane. Much of this, however, never reaches the atmosphere as it is degraded by so called methanotrophic (“methane eating”) bacteria in the water. The microbial life of the lakes thus have a large impact on their emission of greenhouse gases.

In the boreal zone in particular, winter plays a crucial role to this process. Ice coverage effectively inhibits the emission into the atmosphere, and snow affects both water temperature and light levels. This, in turn, is important to the photosynthetic processes of the water, exclusively driven by algae, and by extension to oxygen-depending microorganisms.

Ongoing climate changes will affect this situation in boreal forest lakes. Snow cover is expected to melt earlier, exposing frozen lakes to prolonged periods of direct sunlight. A new study shows that frozen lakes without snow contain less methanotrophic bacteria and hence also degrade less methane, which may be released into the atmosphere once the ice melts. The study has been conducted by researchers from the Uppsala University and the Deparment of Forest Mycology and Plant Pathology at the SLU.

Sari Peura from the SLU has been the project leader.

“We examined the water of a frozen, snow covered lake in northern Sweden during one week. Then we removed the snow, and did the same samples and measurements for one more week”, Sari says. “Our hypothesis was that the increased light would result in more active algae and therefore more oxygenized water, which in turn should benefit the microbial community and cause an increased methane reduction, compared to snow covered lakes”.

However, the hypothesis turned out to be incorrect. Although the amount of chlorophyll increased in proportion to the increase in light, this did not lead to an increase in methanotrophic activity in the water. Instead, the methane concentration increased, and the amount of methantrophic bacteria dropped.

“We don’t know yet exactly what causes this, Sari says. We assumed that the entire microbial community would benefit from the increase in available oxygen, but this was not the case. Our new hypothesis is that the algae activated by the light also produce and exude certain substrates that benefit other bacteria than the methanotrophs. Indeed, we could see an increase in such bacteria, but not in methanotrophs”.

The idea is that these bacteria subsequently outgrow the slow-growing methanotrophs, which would diminish the degradation of methane. Another possible explanation could be that the increased algae activity caused a phosphate shortage, which has previously been reported as a limiting factor to methanotrophs.

It is important to understand the limitations in this particular study, Sari concludes. The experiment only went on for two weeks. It clearly shows that a decrease in snow coverage on frozen lakes may lead to increased methane concentration in the lake, which in turn may lead to increased methane emissions into the atmosphere once the ice melts, thus potentially increasing global warming. However, to study this process over a longer time frame, a new study is required. We now mean to apply for a grant to conduct such a study.

Decreasing snow cover causes increasing methane production in frozen lakes

ABSTRACT: Climate change scenarios anticipate decreased spring snow cover in boreal and subarctic regions. Forest lakes are abundant in these regions and substantial contributors of methane emissions. To investigate the effect of reduced snow cover, we experimentally removed snow from an anoxic frozen lake. We observed that the removal of snow increased light penetration through the ice, increasing water temperature and modifying microbial composition in the different depths. Chlorophyll a and b concentrations increased in the upper water column, suggesting activation of algal primary producers. At the same time, Chlorobiaceae, one of the key photosynthetic bacterial families in anoxic lakes, shifted to lower depths. Moreover, a decrease in the relative abundance of methanotrophs within the bacterial family Methylococcaceae was detected, concurrent with an increase in methane concentration in the water column. These results indicate that decreased snow cover impacts both primary production and methane production and/or consumption, which may ultimately lead to increased methane emissions after spring ice off.

SIGNIFICANCE: Small lakes are an important source of greenhouse gases in the boreal zone. These lakes are severely impacted by the winter season, when ice and snow cover obstruct gas exchange between the lake and the atmosphere and diminish light availability in the water column. Currently, climate change is resulting in reduced spring snow cover. A short-term removal of the snow from the ice stimulated algal primary producers and subsequently heterotrophic bacteria. Concurrently, the relative abundance of methanotrophic bacteria decreased and methane concentrations increased. Our results increase the general knowledge of microbial life under ice and, specifically, the understanding of the potential impact of climate change on boreal lakes.

Decreased Snow Cover Stimulates Under-Ice Primary Producers but Impairs Methanotrophic Capacity


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!

Order by Phone at 888-809-8385 or online at M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at M - F 9am to 5pm EST

Order by Phone at 888-388-7003 or online at M - F 9am to 5pm EST

Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)

Immusist Beverage Concentrate - Proprietary blend, formulated to reduce inflammation while hydrating and oxygenating the cells.

Report abuse


    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Load more ...




    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.