Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Molecular Selfie Reveals How A Chemical Bond Breaks: Proton Seen Escaping The Molecule

% of readers think this story is Fact. Add your two cents.


Imagine what it would be like to watch how the individual atoms of molecules rearrange during a chemical reaction to form a new substance, or to see the compounds of DNA move, rearrange and replicate. Such capability would give unprecedented insight to understand and potentially control the processes.

The simple idea of watching how molecules break, or transform, during chemical reactions has, until now, been unfathomable since it requires tracking all of the atoms, which constitute a molecule, with sub-­‐atomic spatial and few-­‐femtosecond temporal resolution. Hence, taking such “snapshots” with a combined spatio-­‐temporal resolution to witness a molecular reaction was considered fodder for science fiction. Exactly 20 years ago, one of the ideas proposed considered using the molecule’s own electrons to image its structure: Teach the molecule to take a selfie! The idea was brilliant but impossible to implement – until today.

Illustration of laser-­‐induced electron diffraction imaging of a molecular bond break-­‐up in acetylene.
Image Credit: ICFO / Scixel.

In their recent study, reported in Science, ICFO researchers from the Attoscience and Ultrafast Optics Group in collaboration with researchers from the USA, the Netherlands, Denmark and Germany, have reported on the imaging of molecular bond breakup in acetylene (C2H2) nine femtoseconds (1 femtosecond = 1 millionth of a billionth of a second) after its ionization. The team was able to track the individual atoms of the isolated acetylene molecule with a spatial resolution as small as 0.05 Ångström – less than the width of an individual atom – and with a temporal resolution of 0.6 femtoseconds. What’s more, they were able to trigger the breakup of only one of the bonds of the molecule and see how one proton leaves the molecule.

“Our method has finally achieved the required space and time resolution to take snapshots of molecular dynamics without missing any of its events, and we are eager to try it out on other molecular systems such as chemical catalysts and bio-­‐relevant systems” said Jens Biegert, ICREA professor at ICFO and leader of the research.

Teaching a molecule to take a selfie

The team developed a world-­‐leading ultrafast mid-­‐IR laser source and combined it with a reaction microscope to detect the 3D momentum distribution of electrons and ions in full kinematic coincidence. In the experiment, a single isolated acetylene molecule was oriented in space with a short laser pulse. A strong enough, follow up, infrared pulse liberated one electron from the molecule, accelerated it on a returning trajectory and forced it to scatter off its ownparent molecular ion, all within only 9 femtoseconds.

Benjamin Wolter explained, “the flight path and kinetic energy of all collision fragments were recorded with the reaction microscope similar to a big particle physics experiment.”

After some clever data processing, the team was able to extract the entire molecular structure and, moreover, they could show that orienting the molecule along the electric field of the laser, or perpendicular to it, completely changed its dynamics. In one case, the molecule underwent vibrational motion with the laser field, while in the other case a C-­‐H bond was clearly broken. The experiment is the first direct visualization of bond cleavage and observation of the proton during its departure from the [C2H2]2+ ion, something that was never seen before.

“We took one electron, steered it along a specific path with the laser and scattered it off an isolated molecule to record its diffraction pattern” said Biegert, “it is mind-­‐boggling to imagine the length and time scales of the experiment.

The fantastic cooperation between experimentalists and theorists, atomic physicists and quantum chemists from ICFO, Kansas State University, Max-­‐Planck-­‐ Institut für Kernphysik, Physikalisch Technische Bundesanstalt, Center for Free Electron Laser Science/DESY/CUI, Aarhus University, Friedrich-­‐Schiller University Jena, Leiden University, and Universität Kassel made it possible to achieve such feat”.

Contacts and sources:
Universitat Politècnica de Catalunya (UPC)


Source: http://www.ineffableisland.com/2016/12/molecular-selfie-reveals-how-chemical.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.