Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By European Southern Observatory (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

3D Printing of VLT Components

% of readers think this story is Fact. Add your two cents.


ESO has recently utilised the innovative technology of 3D printing [1] to manufacture moulds for the casting of two new telescope components. These are required for the MUSE instrument on ESO’s Very Large Telescope (VLT) in Chile and are part of the Adaptive Optics Facility project. The 3D printing technique offers great promise in the manufacture of complex custom items, which are often needed in astronomical instrumentation, delivering the components more quickly and cheaply, and with greater flexibility.

The first item, which was manufactured by the German firm voxeljet AG, is the structural part of a new sensor arm [2] that was installed in the telescope to work with the MUSE instrument. This change was also needed to accommodate the GALACSI adaptive optics module to be installed in 2015. The sensor arm is a metallic structure that is used to hold three flat mirrors [3], which feed light beams into sensors that control the active optics systems of the VLT and are used for guiding the telescope during observations.

The component was created using a technique known as investment casting, which has been traditionally used to manufacture components with very complex shapes, such as blades for gas turbine engines. With this casting method, a model is generated in software and its mechanical properties are analysed using standard industrial approaches. Once a suitable virtual model has been created a pattern is printed, in this specific case using polymethylmethacrylate, a type of thermoplastic.

Next, a mould is created from the wax-infiltrated plastic pattern, providing a negative of the original shape. This investment process then involves coating the pattern with a heat-proof ceramic. During the process the ceramic is treated and hardened, the wax-infiltrated pattern is melted out of the new ceramic shell, leaving a perfect die into which the metal for the final cast is poured.

The previous sensor arm was manufactured using beryllium, a lightweight metal that satisfied the requirements for the sensor arm. However, beryllium is highly toxic, and cannot be machined or modified safely once the component has been installed. For this reason, high grade aluminium was selected to make the final cast for the replacement.

The second component, a spacer for the VLT test camera, was manufactured by ACTech GmbH, another German company specialising in metal casting techniques. This component was manufactured from ductile cast iron and used a similar investment casting process, once its original pattern had been laser sintered.

Notes

[1] 3D-printing technology is an additive manufacturing process that promises to reduce production time, minimise waste materials and save money for companies. Traditional manufacturing methods, such as milling and lathing are referred to as subtractive processes, because material is removed from a larger piece until the final form is reached. This can generate a lot of waste material in the form of swarf. Additive processes avoid this wastage by building the form up layer by layer to achieve the final form. 3D printing, and more specifically, 3D printing for casts allows for complex internal geometries to be created which are otherwise impossible to achieve.

[2] The function of the new sensor arm is to trick the telescope active optics system to focus 250 millimetres from the original focus position. The result is that the focal plane now lies 500 millimetres from the Nasmyth flange. This extra distance will provide the space needed to install GALACSI, the adaptive optics module for MUSE.

[3] These mirrors are made from HB-CESIC®. This is carbon fibre reinforced silicon carbide, a material characterised by its exceptional hardness, very high specific stiffness and a low thermal expansion coefficient. The mirrors were manufactured by ecm Engineered Ceramic Materials GmbH and Berliner Glas.


Source: http://www.eso.org/public/announcements/ann14011/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.