Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

The Strange Water That Never Freezes Even at Minus 263 degrees Celsius

% of readers think this story is Fact. Add your two cents.


Can water reach minus 263 degrees Celsius without turning into ice? Yes it can, say researchers from ETH Zurich and the University of Zurich, if it is confined in nanometre-scale lipid channels.

Three-dimensional model of the novel lipid mesophase: This cubic motif is repeated regularly in the material.

Photograph: Peter Rüegg / ETH Zurich

Led by Professors Raffaele Mezzenga and Ehud Landau, a group of physicists and chemists from ETH Zurich and the University of Zurich have now identified an unusual way to prevent water from forming ice crystals, so even at extreme sub-zero temperatures it retains the amorphous characteristics of a liquid.

In a first step, the researchers designed and synthesised a new class of lipids (fat molecules) to create a new form of “soft” biological matter known as a lipidic mesophase. In this material, the lipids spontaneously self-assemble and aggregate to form membranes, behaving in a similar way as natural fat molecules. These membranes then adopt a uniform arrangement to form a network of connected channels that measure less than one nanometer in diameter. Temperature and water content, as well as the novel structure of the designed lipid molecules determine the structure that the lipidic mesophase takes.

No space for water crystals 
The lipids form net-like branched membranes which enclose water (light blue).

 Graphic: Livia Salvati Manni / ETH Zurich

What’s so special about this structure is that – unlike in an ice-cube tray – there is no room in the narrow channels for water to form ice crystals, so it remains disordered even at extreme sub-zero temperatures. The lipids don’t freeze either.

Using liquid helium, the researchers were able to cool a lipidic mesophase consisting of a chemically modified monoacylglycerol to a temperature as low as minus 263 degrees Celsius, which is a mere 10 degrees above the absolute zero temperature, and still no ice crystals formed. At this temperature, the water became “glassy”, as the researchers were able to demonstrate and confirm in a simulation. Their study of this unusual behaviour of water when confined within a lipidic mesophase was recently published in the journal Nature Nanotechnology.

“The key factor is the ratio of lipids to water,” explains Professor Raffaele Mezzenga from the Laboratory of Food & Soft Materials at ETH Zurich. Accordingly, it is the water content in the mixture that determines the temperatures at which the geometry of the mesophase changes. If, for example, the mixture contains 12 percent water by volume, the structure of the mesophase will transition at about minus 15 degrees Celsius from a cubic labyrinth to a lamellar structure.
Natural antifreeze for bacteria

“What makes developing these lipids so tricky is their synthesis and purification,” says Ehud Landau, Professor of Chemistry at the University of Zurich. He explains that this is because lipid molecules have two parts; one that is hydrophobic (repels water) and one that is hydrophilic (attracts water). “This makes them extremely difficult to work with,” he says.

The soft biomaterial formed from the lipid membranes and water has a complex structure that minimises the water’s contact with the hydrophobic parts and maximises its interface with the hydrophilic parts.

The researchers modelled the new class of lipids on membranes of certain bacteria. These bacteria also produce a special class of self-assembling lipids that can naturally confine water in their interior, enabling the microorganisms to survive in very cold environments.

“The novelty of our lipids is the introduction of highly strained three-membered rings into specific positions within the hydrophobic parts of the molecules”, says Landau. “These enable the necessary curvature to produce such tiny water channels and prevent lipids to crystallize.” 

Livia Salvati Manni and ETH Professor Raffaele Mezzenga with models of lipid mesophases.

Photograph: P. Rüegg/ETH Zurich

Soft matter for research

These new lipidic mesophases will serve primarily as a tool for other researchers. They can be utilised to non-destructively isolate, preserve and study large biomolecules in a membrane-mimicking environment, for instance by using cryogenic electron microscopy. Biologists are increasingly turning to this method to determine the structures and functions of large biomolecules such as proteins or large molecular complexes.

“In the normal freezing process, when ice crystals form they usually damage and destroy membranes and crucial large biomolecules, which prevents us from determining their structure and function when they interact with lipid membranes,” Mezzenga says.

But not with the new mesophase, which is non-destructive and preserves such molecules in their original state and in presence of the other key building block of life, that is the lipids. “Our research is paving the way for future projects to determine how proteins might be preserved in their original form and interact with lipid membranes at very low temperatures,” says the ETH professor.

This new class of soft matter could also be employed in potential applications wherever water must be prevented from freezing. “But our work wasn’t aimed at exotic applications,” Mezzenga says: “Our main focus was to give researchers a new tool to facilitate the study of molecular structures at low temperature without ice-interfering crystals, and ultimately to understand how two main components of life, i.e. water and lipids, interact under extreme conditions of temperature and geometrical confinement” he adds

Contacts and sources:
Peter Rüegg
Peter Rüegg
ETH Zurich

Citation:  Soft biomimetic nanoconfinement promotes amorphous water over ice.Salvati Manni L, Assenza S, Duss M, Vallooran JJ, Juranyi F, Jurt S, Zerbe O, Landau EM, Mezzenga R. Nature Nanotechnology. Published: 08.April 2019. doi: 10.1038/s41565-019-0415-0


Source: http://www.ineffableisland.com/2019/04/the-strange-water-that-never-freezes.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.