Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

How to Escape a Black Hole: Simulations Provide New Clues to What’s Driving Powerful Plasma Jets

% of readers think this story is Fact. Add your two cents.


This visualization of a general-relativistic collisionless plasma simulation shows the density of positrons near the event horizon of a rotating black hole. Plasma instabilities produce island-like structures in the region of intense electric current. 

Credit: Kyle Parfrey et al./Berkeley Lab

Black holes are known for their voracious appetites, binging on matter with such ferocity that not even light can escape once it’s swallowed up.

Less understood, though, is how black holes purge energy locked up in their rotation, jetting near-light-speed plasmas into space to opposite sides in one of the most powerful displays in the universe. These jets can extend outward for millions of light years.

New simulations led by researchers working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have combined decades-old theories to provide new insight about the driving mechanisms in the plasma jets that allows them to steal energy from black holes’ powerful gravitational fields and propel it far from their gaping mouths.

The simulations could provide a useful comparison for high-resolution observations from the Event Horizon Telescope, an array that is designed to provide the first direct images of the regions where the plasma jets form.

The telescope will enable new views of the black hole at the center of our own Milky Way galaxy, as well as detailed views of other supermassive black holes.

“How can the energy in a black hole’s rotation be extracted to make jets?” said Kyle Parfrey, who led the work on the simulations while he was an Einstein Postdoctoral Fellow affiliated with the Nuclear Science Division at Berkeley Lab. “This has been a question for a long time.”

Now a senior fellow at NASA Goddard Space Flight Center in Maryland, Parfrey is the lead author of a study, published Jan. 23 in Physical Review Letters, that details the simulations research.

The simulations, for the first time, unite a theory that explains how electric currents around a black hole twist magnetic fields into forming jets, with a separate theory explaining how particles crossing through a black hole’s point of no return – the event horizon – can appear to a distant observer to carry in negative energy and lower the black hole’s overall rotational energy.

It’s like eating a snack that causes you to lose calories rather than gaining them. The black hole actually loses mass as a result of slurping in these “negative-energy” particles.

Computer simulations have difficulty in modeling all of the complex physics involved in plasma-jet launching, which must account for the creation of pairs of electrons and positrons, the acceleration mechanism for particles, and the emission of light in the je
 

Berkeley Lab has contributed extensively to plasma simulations over its long history. Plasma is a gas-like mixture of charged particles that is the universe’s most common state of matter.

Parfrey said he realized that more complex simulations to better describe the jets would require a combination of expertise in plasma physics and the general theory of relativity.

“I thought it would be a good time to try to bring these two things together,” he said.

Performed at a supercomputing center at NASA Ames Research Center in Mountain View, California, the simulations incorporate new numerical techniques that provide the first model of a collisionless plasma – in which collisions between charged particles do not play a major role – in the presence of a strong gravitational field associated with a black hole.

The simulations naturally produce effects known as the Blandford-Znajek mechanism, which describes the twisting magnetic fields that form jets, and a separate Penrose process that describes what happens when negative-energy particles are gulped down by the black hole.

The Penrose process, “even though it doesn’t necessarily contribute that much to extracting the black hole’s rotation energy,” Parfrey said, “is possibly directly linked to the electric currents that twist the jets’ magnetic fields.”

While more detailed than some earlier models, Parfrey noted that his team’s simulations are still playing catch-up with observations, and are idealized in some ways to simplify the calculations needed to perform the simulations.

The team intends to better model the process by which electron-positron pairs are created in the jets in order to study the jets’ plasma distribution and their emission of radiation more realistically for comparison to observations. They also plan to broaden the scope of the simulations to include the flow of infalling matter around the black hole’s event horizon, known as its accretion flow.

“We hope to provide a more consistent picture of the whole problem,” he said.

Other participants in the research are Alexander Philippov, who was an Einstein Postdoctoral Fellow at UC Berkeley, and Benoit Cerutti, a CNRS researcher at the Université Grenoble Alpes in France. Parfrey and Philippov were members of the Department of Astronomy and Theoretical Astrophysics Center at UC Berkeley, and Philippov is now at the Flatiron Institute in New York.

The work was supported by NASA through the Einstein Postdoctoral Fellowships program, CNES, Labex OSUG@2020, NASA’s High-End Computing Program, TGCC, CINES, and the Simons Foundation.

 

Contacts and sources:
Glenn Roberts Jr.

Lawrence Berkeley National Laboratory


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.