Profile image
浏览次数

现在:
最近一小时:
最近24小时:
浏览总量:
量子+让我们生活翻天覆地
Thursday, September 22, 2016 22:03
% of readers think this story is Fact. Add your two cents.
0


中国量子雷达研制成功! 有哪些技术优势?

上月,中国电科首部基于单光子检测的量子雷达系统在14所研制成功,达到国际先进水平。该量子雷达系统由中国电科14所智能感知技术重点实验室研制,在中国科学技术大学、中国电科27所以及南京大学等协作单位的共同努力下,经过不懈的努力,完成了量子探测机理、目标散射特性研究以及量子探测原理的实验验证,并且在外场完成真实大气环境下目标探测试验,获得百公里级探测威力,探测灵敏度极大提高,指标均达到预期效果,取得阶段性重大研究进展与成果。

国内科研团队相继在量子通信和量子计算上取得技术突破后,中国在量子雷达领域再下一城。那么,和经典雷达相比量子雷达又有何特殊之处呢?

量子雷达团队外场合影

量子雷达不是对经典雷达的颠覆

雷达最早在二战期间得到大规模应用,特别是在不列颠空战中,英国皇家空军依靠雷达的辅助对德国空军造成较大杀伤。当时的雷达单纯利用发射的电磁波信号,经过目标表面散射后,通过判断接收信号的能量,来识别、判断目标。不过,这种雷达的信息载体只能通过信号的绝对幅度或幅度的变化来体现,检测机理就是简单的能量检测,无法区分杂波和目标,分不清在空中飞舞的锡箔条和真正的战机,信息利用方式单一,因此,应用领域受到较大的限制。

随着技术的发展,雷达也不断发生变化,从单纯利用信号的强度信息,演化为综合利用电磁信号的频率和相位信息,即电磁场的二阶特性。通过发射电磁波二阶特性的应用,在调制方式上,出现了线性调频、相位编码和捷变频等复杂信号形式,这些信号形式有效解决了传统雷达时宽与带宽的矛盾,并提升雷达抗干扰、抗杂波的能力。在检测技术上,催生了动目标检测技术、空时自适应处理技术和脉冲多普勒体制,这些技术利用目标和杂波在多普勒域上的差异,实现杂波中运动目标的有效检测,提升雷达抗杂波能力。

量子雷达则是将量子信息技术引入经典雷达探测领域,解决经典雷达在探测、测量和成像等方面的技术瓶颈,提升雷达的综合性能。量子雷达属于一种新概念雷达,首要应用是实现目标有无的探测,在此基础上可以进一步扩展应用领域,包括量子成像雷达、量子测距雷达和量子导航雷达等,从本质上来说,量子雷达并没有脱离经典雷达探测的框架体系,只是在利用量子理论进行系统分析时,对雷达中一些概念和物理现象,如接收机噪声等,具有全新的、更准确的理解。在此基础上,量子雷达从信息调制载体和检测处理等方面入手,提升雷达的性能。总体而言,量子雷达是对经典雷达理论的更新和补充,而不是颠覆和取代。

量子雷达的分类

根据利用量子现象和光子发射机制的不同,量子雷达主要可以分为以下3个类别:

一是量子雷达发射非纠缠的量子态电磁波。其探测过程为利用泵浦光子穿过(BBO)晶体,通过参量下转换产生大量纠缠光子对,各纠缠光子对之间的偏振态彼此正交,将纠缠的光子对分为探测光子和成像光子,成像光子保留在量子存储器中,探测光子由发射机发射经目标反射后,被量子雷达接收,根据探测光子和成像光子的纠缠关联可提高雷达的探测性能。与不采用纠缠的量子雷达相比,采用纠缠的量子雷达分辨率以二次方速率提高。

二是量子雷达发射纠缠的量子态电磁波。发射机将纠缠光子对中的信号光子发射出去,“备份”光子保留在接收机中,如果目标将信号光子反射回来,那么通过对信号光子和“备份”光子的纠缠测量可以实现对目标的检测。

三是雷达发射经典态的电磁波。在接收机处使用量子增强检测技术以提升雷达系统的性能,目前,该技术在激光雷达技术中有着广泛的应用。中电14所实际上应用的是上述三种模式中的一种。

量子雷达的技术优势

目前,经典雷达存在一些缺点,一是发射功率大(几十千瓦),电磁泄漏大;二是反隐身能力相对较差;三是成像能力相对较弱;四是信号处理复杂,实时性弱。针对经典雷达存在的技术难点,量子信息技术均存在一定的技术优势,可以通过与经典雷达相结合,提升雷达的探测性能。

首先,量子信息技术中的信息载体为单个量子,信号的产生、调制和接收、检测的对象均为单个量子,因此整个接收系统具有极高的灵敏度,即量子接收系统的噪声基底极低,相比经典雷达的接收机,噪声基底能够降低若干个数量级。再忽略工作频段、杂波和动态范围等实现因素,则雷达作用距离可以大幅提升数倍甚至数十倍。从而大大提升雷达对于微弱目标,甚至隐身目标的探测能力。

其次,量子信息技术中的调制对象为量子态,相比较经典雷达的信息调制对象,量子态可以表征量子“涨落变化”等微观信息,具有比经典时、频、极化等更加高阶的信息,即调制信息维度更高。从信息论角度出发,通过对高维信息的操作,可以获取更多的性能。对于目标探测而言,通过高阶信息调制,可以在不影响积累得益的前提下,进一步压低噪声基底,从而提升噪声中微弱目标检测的能力;从信号分析角度出发,通过对信号进行量子高阶微观调制,使得传统信号分析方法难以准确提取征收信号中调制的信息,从而提升在电子对抗环境下的抗侦听能力。综合而言,通过量子信息技术的引入,通过量子化接收,原理上可以有效降低接收信号中的噪声基底功率;通过量子态调制,原理上可以增加信息处理的维度,一方面可以提升信噪比得益,另一方面可以降低发射信号被准确分析和复制的可能性,从而在目标探测和电子对抗领域具有广阔的应用潜力。

处于国际先进水平

据专家披露,其实相关研究已经做了很多年,之前做的量子成像方面的工作,并没有在单光子水平上,而是用光的高阶关联特性实现的成像,确实有突破云雾等的特点,但成像过程还是比较复杂的,流程也较漫长,实用性还有待发展,而且很难说叫量子成像。可以说,本次实现的技术突破是多年技术积累的结果,并非为了追赶近期“墨子”号掀起的量子热。

本次技术突破属于量子探测领域,特点就是突破现在测量方法的经典极限(例如光的衍射极限等),是业界比较看好的技术(诚然,也有学者对此有异议)。世界各国对此也都有研究,而且技术发展较快——2008年美国麻省理工学院的Lloyd教授首次提出了量子远程探测系统模型—量子照射雷达,从理论上证明了量子力学可以应用于远程目标探测。2012年,东京大学的Nakamura和Yamamoto采用超导回路,取得了微波频段单光子态和压缩态产生与接收技术的新突破。2013年,意大利的Lopaeva等首次用实验方法实现了量子照射雷达,该实验基于光子数关联,验证了Lloyd提出的量子照射雷达模型探测在高噪声及高损耗时依然有目标探测能力;2015年,德国亚琛工业大学的Shabir Barzanjeh等对微波量子照明探测进行了深入研究。

目前,中国在该领域仅仅处于技术先进水平,还不是领先状态,革命尚未成功,同志们仍需努力。

全球首颗!量子卫星!量子+让我们的生活翻天覆地

      量子通讯卫星是一种传输高效的通信卫星,彻底杜绝间谍窃听及破解的保密通信技术,抗衡外国的网络攻击与防御能力。简单的说,一个非常形象化的例子来解释这一关键技术的难度:一个普通的十五瓦左右的灯泡每秒钟辐射出的光量子个数可以达到百亿亿个,想要实现单个光量子的制备就如同在这百亿亿个光量子发射出来的瞬间捕捉到其中的某一个,技术难度可想而知。另一个难题是单光子的探测。单个光子已经是光能量的最小单元,能量是非常微弱的,需要发展出非常精密和高效的单光子探测技术。具备了单个光量子的制备和探测的能力后,我们就可以用来实现安全的量子通信了。

      量子信号从地面上发射并穿透大气层———卫星接收到量子信号并按需要将其转发到另一特定卫星———量子信号从该特定卫星上再次穿透大气层到达地球某个角落的指定接收地点。

       量子卫星是中国科学院空间科学先导专项首批科学实验卫星之一,其主要科学目标是借助卫星平台,进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破;在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。

      2016年8月,中国科学家将发射世界首颗“量子卫星”,这有朝一日或许有助于建立一个极其安全的全球通信网络。 全球首颗量子科学实验卫星被正式命名为“墨子号”。

      2016年8月16日01时40分,由中国科学技术大学主导研制的世界首颗量子科学实验卫星“墨子号”在酒泉卫星发射中心用长征二号丁运载火箭成功发射升空。“墨子号”是中科院空间科学先导专项中首批确定立项研制的4颗科学实验卫星之一,它的成功发射和在轨运行,不仅将助力于我国广域量子通信网络的构建,服务于国家信息安全,还将开展对量子力学基本问题的空间尺度实验检验,加深人类对量子力学自身的理解。

       命名缘由于墨子在《墨经》中提出的“光学八条”,墨家逻辑是全球三大古老逻辑体系之一,而逻辑体系是科学的基础,墨子在两千多年前就发现了光线沿直线传播,并设计了小孔成像实验,奠定了光通信、量子通信的基础。

      我国发射的全球首颗量子科学实验卫星被命名为“墨子号”,以“墨子号”命名以纪念墨子。

     由于量子信号的携带者光子在外层空间传播时几乎没有损耗,如果能够在技术上实现纠缠光子再穿透整个大气层后仍然存活并保持其纠缠特性,人们就可以在卫星的帮助下实现全球化的量子通信。

     此次发射的量子科学实验卫星完全由我国自主研发,突破了卫星平台、有效载荷、地面光学收发站等一系列关键技术,将在轨开展量子密钥分发、广域量子密钥网络、量子纠缠分发、量子隐形传态、星地高速相干激光通信等科学实验。

     潘建伟研究小组于2003年开始研究自由空间量子通信,他们在实验点制备出成对的纠缠光子,再利用两个专门设计加工的发射望远镜将容易发散的细小光束“增肥”后向东西相距13公里的两个实验站送出,两个接收端用同样型号的望远镜收集。

     经过研究人员的种种努力,在如此远距离的传送中,虽有许多纠缠光子衰减,但仍有相当比例的“夫妻对”能存活下来并有旺盛的生命力,经单光子探测器检测,分居东西两地的光子“夫妻对”即使相距遥远仍能保持相互纠缠状态,携带信息的数量和质量能完全满足基于卫星的全球化量子通信要求。

      在此基础上,研究小组进一步利用分发的纠缠光源进行绝对安全的量子保密通信。13公里不仅是目前国际上自由空间纠缠光子分发的最远距离,也是目前国际上没有窃听漏洞量子密钥分发的最大距离。

      2012年8月11日我国科学家潘建伟等人近期在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定技术基础。国际权威学术期刊《自然》杂志8月9[5] 日重点介绍了该成果。

      量子通讯的优势是啥

      由于量子信号的携带者光子在外层空间传播时几乎没有损耗,如果能够在技术上实现纠缠光子再穿透整个大气层后仍然存活并保持其纠缠特性,人们就可以在卫星的帮助下实现全球化的量子通信。

 

2016-09-22 22:00:04

原始网页: http://blog.sina.com.cn/s/blog_60bfac9d0102ww1f.html

Report abuse

评论

您的评论
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

今日头条
最新故事

Register

Newsletter

Email this story
Share This Story:
Print this story
Email this story
Digg
Reddit
StumbleUpon
Share on Tumblr
GET ALERTS:

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.