Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By New Energy And Fuel (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Tweak Makes Lithium Metal Battery Better Than Lithium Ion

% of readers think this story is Fact. Add your two cents.


Pacific Northwest National Laboratory research shows adding a pinch of chemical additive to a lithium-metal battery’s electrolyte helps make rechargeable batteries that are stable, charge quickly, and go longer in between charges than lithium-ion batteries.

New, early-stage research shows adding a small amount of the chemical lithium hexafluorophosphate to a dual-salt, carbonate solvent-based electrolyte can make rechargeable lithium-metal batteries stable, charge quickly and have a high voltage.

This is an artist’s illustration shows how PNNL’s addition of the chemical lithium hexafluorophosphate to a dual-salt, carbonate solvent-based electrolyte makes rechargeable lithium-metal batteries stable, charge quickly, have a high voltage, and go longer in between charges.  Image Credit: Pacific Northwest National Laboratory. Click image for the largest view.

Pacific Northwest National Laboratory chemist Wu Xu said, “A good lithium-metal battery will have the same lifespan as the lithium-ion batteries that power today’s electric cars and consumer electric devices, but also store more energy so we can drive longer in between charges.”

Xu is a corresponding author on the paper published in the journal Nature Energy.

Most of the rechargeable batteries used today are lithium-ion batteries, which have two electrodes: one that’s positively charged and contains lithium, and another negative one that’s typically made of graphite. Electricity is generated when electrons flow through a wire that connects the two.

To control the electrons, positively charged lithium atoms shuttle from one electrode to the other through another path, the electrolyte solution in which the electrodes sit. But graphite can’t store much energy, limiting the amount of energy a lithium-ion battery can provide smart phones and electric vehicles.

When lithium-based rechargeable batteries were first developed in the 1970s, researchers used lithium metal for the negative electrode, called an anode. Lithium was chosen because it has ten times more energy storage capacity than graphite. The problem was, the lithium-carrying electrolyte reacted with the lithium anode. This caused microscopic lithium nanoparticles and branches called dendrites to grow on the anode surface, and led the early batteries to fail.

Many have tweaked rechargeable batteries over the years in an attempt to resolve the dendrite problem. Researchers switched to other materials such as graphite for the anode. Scientists have also coated anodes with protective layers, while others have created electrolyte additives. Some solutions eliminated dendrites but also resulted in impractical batteries with little power. Other methods only slowed, but didn’t stop, dendrite growth.

Thinking today’s rechargeable lithium-ion batteries with graphite anodes could be near their peak energy capacity, PNNL is taking another look at the older design with lithium metal as an anode. Xu and colleagues were part of earlier PNNL research seeking a better-performing electrolyte. The electrolytes they tried produced either a battery that didn’t have problematic dendrites and was super-efficient but charged very slowly and couldn’t work in higher-voltage batteries, or a faster-charging battery that was unstable and had low voltages.

Next, they tried adding small amounts of a salt that’s already used in lithium-ion batteries, lithium hexafluorophosphate, to their fast-charging electrolyte. They paired the newly juiced-up electrolyte with a lithium anode and a lithium nickel manganese cobalt oxide cathode. It turned out to be a winning combination, resulting in a fast, efficient, high-voltage battery.

The additive enabled a 4.3-volt battery that retained more than 97 percent of its initial charge after 500 repeated charges and discharges, while carrying 1.75 milliAmps of electrical current per square centimeter of area. It took the battery about one hour to fully charge.

The battery performed well largely because the additive helps create a robust protective layer of carbonate polymers on the battery’s lithium anode. This thin layer prevents lithium from being used up in unwanted side reactions, which can kill a battery.

Because the additive is already an established component of lithium-ion batteries, it’s readily available and relatively inexpensive. The small amounts needed – just 0. 6 percent of the electrolyte by weight – should also further lower the electrolyte’s cost.

Xu and his team continue to evaluate several ways to make rechargeable lithium-metal batteries viable, including improving electrodes, separators and electrolytes. Specific next steps include making and testing larger quantities of their electrolyte, further improving the efficiency and capacity retention of a lithium-metal battery using their electrolyte, increasing material loading on the cathode and trying a thinner anode.

This is significant news. Your humble writer’s common lithium-ion batteries run at 3.8 volts and are, usually, mostly shot by 1000 charges or about three years. This new assembly offer more volts and 97 percent capacity at 500 cycles. Sign me up!!!


Source: http://newenergyandfuel.com/http:/newenergyandfuel/com/2017/03/02/tweak-makes-lithium-metal-battery-better-than-lithium-ion/


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.