Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Desdemona Despair (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

NASA discovers a new mode of ice loss in Greenland – “Intense melting such as we saw in 2010 and 2012 is without precedent”

% of readers think this story is Fact. Add your two cents.



Desdemona Despair

By Carol Rasmussen
25 May 2017

(JPL) – A new NASA study finds that during Greenland’s hottest summers on record, 2010 and 2012, the ice in Rink Glacier on the island’s west coast didn’t just melt faster than usual, it slid through the glacier’s interior in a gigantic wave, like a warmed freezer pop sliding out of its plastic casing. The wave persisted for four months, with ice from upstream continuing to move down to replace the missing mass for at least four more months.

This long pulse of mass loss, called a solitary wave, is a new discovery that may increase the potential for sustained ice loss in Greenland as the climate continues to warm, with implications for the future rate of sea level rise.

The study by three scientists from NASA’s Jet Propulsion Laboratory in Pasadena, California, was the first to precisely track a glacier’s loss of mass from melting ice using the horizontal motion of a GPS sensor. They used data from a single sensor in the Greenland GPS Network (GNET), sited on bedrock next to Rink Glacier. A paper on the research is published online in the journal Geophysical Research Letters.

Rink is one of Greenland’s major outlets to the ocean, draining about 11 billion tons (gigatons) of ice per year in the early 2000s — roughly the weight of 30,000 Empire State Buildings. In the intensely hot summer of 2012, however, it lost an additional 6.7 gigatons of mass in the form of a solitary wave. Previously observed melting processes can’t explain that much mass loss.

The wave moved through the flowing glacier during the months of June through September at a speed of about 2.5 miles (4 kilometers) a month for the first three months, increasing to 7.5 miles (12 kilometers) during September. The amount of mass in motion was 1.7 gigatons, plus or minus about half a gigaton, per month. Rink Glacier typically flows at a speed of a mile or two (a few kilometers) a year.

The wave could not have been detected by the usual methods of monitoring Greenland’s ice loss, such as measuring the thinning of glaciers with airborne radar. “You could literally be standing there and you would not see any indication of the wave,” said JPL scientist Eric Larour, a coauthor of the new paper. “You would not see cracks or other unique surface features.”

The researchers saw the same wave pattern in the GPS data for 2010, the second hottest summer on record in Greenland. Although they did not quantify the exact size and speed of the 2010 wave, the patterns of motion in the GPS data indicate that it must have been smaller than the 2012 wave but similar in speed.

“We know for sure that the triggering mechanism was the surface melting of snow and ice, but we do not fully understand the complex array of processes that generate solitary waves,” said JPL scientist Surendra Adhikari, who led the study.

During the two summers when solitary waves occurred, the surface snowpack and ice of the huge basin in Greenland’s interior behind Rink Glacier held more water than ever before. In 2012, more than 95 percent of the surface snow and ice was melting. Meltwater may create temporary lakes and rivers that quickly drain through the ice and flow to the ocean. “The water upstream probably had to carve new channels to drain,” explained coauthor Erik Ivins of JPL. “It was likely to be slow-moving and inefficient.” Once the water had formed pathways to the base of the glacier, the wave of intense loss began.

The scientists theorize that previously known processes combined to make the mass move so quickly. The huge volume of water lubricated the base of the glacier, allowing it to move more rapidly, and softened the side margins where the flowing glacier meets rock or stationary ice. These changes allowed the ice to slide downstream so fast that ice farther inland couldn’t keep up.

The glacier gained mass from October through January as ice continued to move downstream to replace the lost mass. “This systematic transport of ice in fall to midwinter had not been previously recognized,” Adhikari emphasized.

“Intense melting such as we saw in 2010 and 2012 is without precedent, but it represents the kind of behavior that we might expect in the future in a warming climate,” Ivins added. “We’re seeing an evolving system.”

Greenland’s coast is dotted with more than 50 GNET stations mounted on bedrock to track changes below Earth’s surface. The network was installed as a collaborative effort by the U.S. National Science Foundation and international partners in Denmark and Luxembourg. Researchers use the vertical motions of these stations to observe how the North American tectonic plate is rebounding from its heavy ice burden of the last ice age. Adhikari, Ivins and Larour were the first to quantitatively explore the idea that, under the right circumstances, the horizontal motions could reveal how the ice mass was changing as well.

“What makes our work exciting is that we are essentially identifying a new, robust observational technique to monitor ice flow processes on seasonal or shorter time scales,” Adhikari said. Existing satellite observations do not offer enough temporal or spatial resolution to do this.

The GNET stations are not currently being maintained by any agency. The JPL scientists first spotted the unusual behavior of Rink Glacier while examining whether there were any scientific reasons to keep the network going.

“Boy, did we find one,” Ivins said.Contact

Alan Buis
Jet Propulsion Laboratory, Pasadena, California
818-354-0474
[email protected]

NASA Discovers a New Mode of Ice Loss in Greenland


ABSTRACT: The annual cycle and secular trend of Greenland mass loading are well recorded in measurements of solid Earth deformation. Horizontal crustal displacements can potentially track the spatiotemporal detail of mass changes with great fidelity. Our analysis of Greenland crustal motion data reveals that a significant excitation of horizontal amplitudes occurs during the intense melt years. We discover that solitary seasonal waves of substantial mass transport (1.67 ± 0.54 Gt/month) traveled at an average speed of 7.1 km/month through Rink Glacier in 2012. We deduce that intense surface melting enhanced either basal lubrication or softening of shear margins, or both, causing the glacier to thin dynamically in summer. The newly routed upstream subglacial water was likely to be both retarded and inefficient, thus providing a causal mechanism for the prolonged ice transport to continue well into the winter months. As the climate continues to produce increasingly warmer spring and summer, amplified seasonal waves of mass transport may become ever more present with important ramifications for the future sea level rise.

SIGNIFICANCE: It has become well known that seasonal ice flow variability of Greenland outlet glaciers may often be associated with the drainage of supraglacial lakes that accumulate meltwater during summer. However, tracking the details is inevitably limited due to the fact that the mechanisms and rates of meltwater transfer are hidden from view, and theoretical models are fraught with a number of difficulties. Here we use a previously unrecognized source of data that constrain the mass transport during a season of intense Greenland melting and document the evolution of a mass transport wave as it passes down glacier. The breakthrough is twofold: demonstration of the power of the new technique and the first measurement of the mass amplitude. The technique is effectively using the measurement of the deformed solid Earth elastic response as a filter that uniquely responds to neighboring glacier mass changes. We quantify that the wave through Rink Glacier is enormous in terms of its mass transport, amounting to about half of the average annual discharge during 2000–2005, and travels at an average speed of 7.1 km/month. Our mass transport wave measurement is the first of its kind, on any of the major outlet glaciers of either Greenland or Antarctica.

Mass transport waves amplified by intense Greenland melt and detected in solid Earth deformation


Source: http://www.desdemonadespair.net/2017/05/nasa-discovers-new-mode-of-ice-loss-in.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.