Profile image
By Latest Daily News
Contributor profile | More stories
Story Views

Last Hour:
Last 24 Hours:

Scientists Discover Cellular Pathway to Trigger Insulin Release

Sunday, July 9, 2017 11:44
% of readers think this story is Fact. Add your two cents.

From Isotrope:

Researchers from Uppsala University have identified a critical aspect of how our bodies produce insulin, perhaps paving the way for more effective future diabetes treatments. This study found that levels of the Epac2A protein compound are directly correlated to insulin release. By utilizing specialized microscopy techniques the research team was able to visualize the binding of Epac2A and cyclic Adenosine Monophosphate (cAMP) for the first time. This process was shown to be a primary pathway for the movement of Epac2A to the cellular membrane receptor sites which regulate granular insulin release [1]. This represents a deep insight to a before undescribed link between Epac2A, cAMP, and insulin release.

Shedding Light on Long Held Suspicions

Cyclic AMP has been well studied as a facilitator of intracellular transportation. This molecules’ role in cytosis has been well agreed upon—though many of its dynamics still aren’t well understood.  Previous research has shown that cAMP is integrally involved in the release of insulin, and also that Epac2A levels seem to be involved. [3] This research does well to identify many of the moving parts of the process underlying cellular insulin release, though there has still been much mystery as to how they all fit together. This new research shows that cAMP binds to the Epac2A protein and rapidly transports it to the cellular membrane, where it then binds to sites responsible for regulating insulin release. This suggests two important new understandings that one; Epac2A plays a direct role in regulating insulin granule release from pancreatic B-cells and two; cellular cAMP levels likely correlate to the effectiveness of this mechanism.

Understanding Cyclic Adenosine Monophosphate (cAMP)

Adenosine Triphosphate (ATP) is often associated with energy levels by nutritionists and doctors alike. This molecule plays an integral role in our bodies’ abilities to transfer energy to different areas, but it isn’t a direct source in most cases. It’s like crude oil, which can be further refined by different cells into different types of fuel to suit their purpose. Cyclic Adenosine Monophosphate (cAMP) is produced inside cells after the conversion of ATP via the enzyme Adenylate Cyclase. Once cells have generated cAMP, they utilize it through the binding with different proteins. In this case of this new study, researchers identified the messenger pathways with heightened activity after the binding of Epac2A and cAMP. This pathway was shown to transport the Epac2A compounds directly to the cellular plasma membrane, where they are then used to regulate insulin release. Simply put; it seems that both cAMP levels and Epac2A levels likely correlate directly to…

Continue Reading


We encourage you to Share our Reports, Analyses, Breaking News and Videos. Simply Click your Favorite Social Media Button and Share.

Report abuse


Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories



Top Global

Top Alternative




Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.