Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Solving the Origin Mystery of Multicellularity

% of readers think this story is Fact. Add your two cents.


A researcher has pieced together the mystery of how single cell life forms evolved into multicellular organisms.

One of the big evolutionary questions in life is how and why single cell organisms organized themselves to live in a group, thereby forming multicellular life forms.

Wits PhD student, Jonathan Featherston, of the Wits Evolution of Complexity Laboratory, has answered at least part of this question, by decoding the genomic sequence of one of the simplest of all multicellular organisms – the four-celled alga Tetrabaena socialis. His research has been published in Molecular Biology and Evolution.

Tetrabaena is a member of a lineage of green-algae known as the volvocine lineage. The lineage is a model lineage for understanding how multicellularity evolved. By studying the genome of this simple alga, a number of genetic mechanisms that control how cells divide were associated with the origin of multicellularity.

This is the muliticellular algae, Tetrabaena socialis.

Credit: Hisayoshi Nozaki and Yoko Arakaki

By painstakingly piecing together the whole genome sequence for the alga over a period of over two years, using various genome-sequencing methodologies, Featherston has identified the ubiquitin proteasomal pathway (UPP) as a process that plays a key role in the evolution of multicellularity. This pathway is involved in regulating many activities in cells by targeting proteins for destruction thereby maintaining a careful balance of proteins in cells.

“The UPP has been implicated in many human cancers and even as a potential target for treating cancers. From this study it seems that alterations to this pathway were important for how multicellularity evolved in these algae,” says Featherston.

UPP is a complicated pathway that controls the cellular concentration of key proteins that drive cell division and it plays a role in many cellular functions. Featherston’s study suggests that UPP may play a regulating how many divisions each species of volvocine undergoes through degradation of key molecules that control cell division.

“One of the earliest evolutionary adaptations in the volvocines was a modified cell cycle. The multicellular volvocines evolved a genetic program for controlling the number of divisions during reproduction where each species has a genetically programmed maximum number of divisions. Some will only divide twice during reproduction while others may divide 12 times,” he says. “Normally people look a lot at how much of a key regulatory molecule is produced by a cell but here the interest is in the pathway that destroys these molecules. It’s kind of the other side of how cellular processes are regulated.”

Featherston compared the genome sequence of multicellular algae to their nearest single celled relative, in order to establish the genetic differences associated with the evolution of multicellularity. While overall, the the single celled and multicelled algae are very similar, he identified a small set of gene families (131) that were gained at the origin of multicellularity.

“We picked up some trends from this set of families. Many have developmental functions, which indicates that they probably are important for the evolution of multicellularity,” he says.

Featherston’s work shows that the evolution of multicellularity is associated with lineage-specific genetic developments.

“Multicellularity has evolved at least 25 times independently, but in all likelihood while certain general biological mechanisms – like cells-sticking together or modified cell cycles – may be shared, the actual genes driving these developments will mostly be unique to each lineage,” he says. “Almost all the families that are found in other organisms can be found in a diverse array of unicellular organisms, suggesting that the genes that gave rise to multicellularity were derived from genes that were already present in the unicellular ancestor but may have been duplicated to form new genes that now have new functions.”

 

Contacts and sources:
Schalk Mouton

University of the Witwatersrand


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.