Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Болеслава
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Amyloidogenesis of SARS-CoV-2 Spike Protein

% of readers think this story is Fact. Add your two cents.


PreprintPDF Available

Amyloidogenesis of SARS-CoV-2 Spike Protein

  • December 2021

DOI:10.1101/2021.12.16.472920

Authors:

We Sofie Nystrom

Per Hammarström

Preprints and early-stage research may not have been peer reviewed yet.

Download file PDF

Citations (2)

References (26)

Figures (4)

 

Abstract and Figures

SARS-CoV-2 infection is associated with a surprising number of morbidities. Uncanny similarities with amyloid-disease associated blood coagulation and fibrinolytic disturbances together with neurologic and cardiac problems led us to investigate the amyloidogenicity of the SARS-CoV-2 Spike protein (S-protein). Amyloid fibril assays of peptide library mixtures and theoretical predictions identified seven amyloidogenic sequences within the S-protein. All seven peptides in isolation formed aggregates during incubation at 37°C. Three 20-amino acid long synthetic Spike peptides (sequence 191-210, 599-618, 1165-1184) fulfilled three amyloid fibril criteria: nucleation dependent polymerization kinetics by ThT, Congo red positivity and ultrastructural fibrillar morphology. Full-length folded S-protein did not form amyloid fibrils, but amyloid-like fibrils with evident branching were formed during 24 hours of S-protein co-incubation with the protease neutrophil elastase (NE) in vitro. NE efficiently cleaved S-protein rendering exposure of amyloidogenic segments and accumulation of the peptide 193-202, part of the most amyloidogenic synthetic Spike peptide. NE is overexpressed at inflamed sites of viral infection and at vaccine injection sites. Our data propose a molecular mechanism for amyloidogenesis of SARS-CoV-2 S-protein in humans facilitated by endoproteolysis. The potential implications of S-protein amyloidogenesis in COVID-19 disease associated pathogenesis and consequences following S-protein based vaccines should be addressed in understanding the disease, long COVID-19, and vaccine side effects.

 

… 

 

… 

 

… 

 

… 

Figures – available via license: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Content may be subject to copyright.

Discover the world’s research

  • 20+ million members
  • 135+ million publications
  • 700k+ research projects

Join for free

Public Full-text 1

 

Available via license: CC BY-NC-ND 4.0

Content may be subject to copyright.

1

Amyloidogenesis of SARS-CoV-2 Spike Protein

SofieNyström*‡,PerHammarström*‡

DeptofPhysics,ChemistryandBiology,LinköpingUniversity,Linköping,Sweden

ABSTRACT:SARS‐CoV‐2infectionisassociatedwithasurprisingnumberofmorbidities.Uncanny

similaritieswithamyloid‐diseaseassociatedbloodcoagulationandfibrinolyticdisturbancesto‐

getherwithneurologicandcardiacproblemsledustoinvestigatetheamyloidogenicityofthe

SARS‐CoV‐2Spikeprotein(S‐protein).Amyloidfibrilassaysofpeptidelibrarymixturesandtheoret‐

icalpredictionsidentifiedsevenamyloidogenicsequenceswithintheS‐protein.Allsevenpeptides

inisolationformedaggregatesduringincubationat37°C.Three20‐aminoacidlongsynthetic

Spikepeptides(sequence191‐210,599‐618,1165‐1184)fulfilledthreeamyloidfibrilcriteria:nu‐

cleationdependentpolymerizationkineticsbyThT,Congoredpositivityandultrastructuralfibrillar

morphology.Full‐lengthfoldedS‐proteindidnotformamyloidfibrils,butamyloid‐likefibrilswith

evidentbranchingwereformedduring24hoursofS‐proteinco‐incubationwiththeproteaseneu‐

trophilelastase(NE)invitro.NEefficientlycleavedS‐proteinrenderingexposureofamyloidogenic

segmentsandaccumulationofthepeptide193‐202,partofthemostamyloidogenicsynthetic

Spikepeptide.NEisoverexpressedatinflamedsitesofviralinfectionandatvaccineinjectionsites.

OurdataproposeamolecularmechanismforamyloidogenesisofSARS‐CoV‐2S‐proteininhumans

facilitatedbyendoproteolysis.ThepotentialimplicationsofS‐proteinamyloidogenesisinCOVID‐

19diseaseassociatedpathogenesisandconsequencesfollowingS‐proteinbasedvaccinesshould

beaddressedinunderstandingthedisease,longCOVID‐19,andvaccinesideeffects.

TheSARS‐CoV‐2pandemichasseverelyimpactedtheworldandofficialnumbersstatethatover270

millionpeoplehavebeeninfected(Dec2021),butunrecordedcasesarelikelysignificantlyhigher.Co‐

ronavirusesusethesurfacespikeprotein(S‐protein)toattachtohumancells.TheS‐proteinisaho‐

motrimerandeachsubunitofSARS‐CoV‐2S‐proteincomprise1273aminoacids.Fourcommoncorona

viruses;OC43,229E,NL63,HKU1infecthumansandcolonizetherespiratorytract.Recentlyemerged

SARS,MERSandsince2019alsoSARS‐CoV‐2,renderseveredisease.Althoughcoronavirusinfections

arecommon,ithasnotbeforeCOVID‐19beenreportsofsuchawidedistributionofcomplexsymptoms

involvingotherorgansthantherespiratorytract.Bloodclotting,heartfailure,peripheralneuropathy

andCNSdisordersareseveresymptomsoutofmanyreported.Whatcouldbethebasisforthispatho‐

genesis?Amyloidosismanifestsassystemicandlocalizeddisorderswithmanyoverlappingphenotypes

withreportedCOVID‐19symptoms.Wethereforehypothesizedonapotentialmolecularlink.Wewere

inspiredbyprevioushypothesesabouthumanandviralproteinamyloidsandinteractionsbetween

them[1‐3],inparticularSARS‐CoVspikeproteins[4‐6].WeaskedthequestionifSARS‐CoV‐2S‐protein

isamyloidogenic?

MotivatedbyZhangetal2018[5]wefirstobtainedapoollibraryofspikepeptides,intendedfor

antibodyscreening.Thelibrarycomprised316peptides(deliveredintwosubpoolsof158peptides

each)derivedfromapeptidescan(15‐merswith11AAoverlap,SupportingInf.2)throughtheentire

SARS‐CoV‐2S‐protein(ProteinID:P0DTC2).Thelibrarywasassayedforinvitroamyloidfibrilformation.

Fibrilswereformedinbothpeptidesubpools(SupportingInf.1andSFig.1).Encouragedbytheresults

wemovedontogenerate20AApeptidesequencesfromthefull‐lengthSARS‐CoV‐2S‐protein.We

aimedtoaddressthemostamyloidogenicsequencesandusedtheWALTZ

(https://waltz.switchlab.org/)predictionalgorithm[7]toidentifysuchsegments(Table1).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

2

Table 1. Amino acid sequences and properties of synthetic SARS-CoV-2 S-protein peptides

PeptideAminoacidsequence*MW

(Da)**pIThTkinCongo

RedUltrastructure

Spike191 FVFKNIDGYFKIYSKHTPIN24319.4++fibril

Spike259WTAGAAAYYVGYLQPRTFLLK23899.5‐ +fibril

Spike362 KKKGGGYSVLYNSASFSTFK216910.0‐ +amorphous

Spike532NLVKNKCVNFNFNGLTGTGV21399.3++amorphous

Spike599GTNTSNQVAVLYQDVNCTEV21553.7++fibril

Spike689 KKKRSVASQSIIAYTMSLGA213910.5‐ ‐ribbons

Spike1165LGDISGINASVVNIQKEIDR21414.6++fibril

*ResiduesassignedincolorindicatetheamyloidogenicsegmentsaspredictedbyWALTZ.Highlightedingray

arenon‐nativeaminoacidsintroducedforsolubility.**Theoreticalmass(Dalton).Massspectraofpeptides

inSFig.2.

ThesevenamyloidogenicsequencesweredistributedovertheentireS‐proteinandarenamedaccord‐

ingtothestartingpositionoftheS‐protein(Fig.1).Allbutone(Spike362)ofthepredictedsequences

areinbeta‐sheetconformationinthecryo‐EMstructureofSARS‐CoV‐2Sinitsclosedstate[8].

Figure1.A.ThestructureofoneprotomerofthetrimericSARS‐CoV‐2S‐proteininitsclosedstate,PDBcode:6VXX[8]

withthepredictedfullsequenceoftheamyloidogenicpeptideshighlightedinthesamecolorsasthepredictionsinTable

1.B.ConformationofpeptideswithinthefoldedS‐proteinincomparisonwithAlphaFold2modelsofthesyntheticpep‐

tides(Table1)

.

ThemembranespanningC‐terminalpartoftheprotein(Spike1165)isnotincludedinthestructure.

ResultsfromAlphafold2[9]ontheselectedpeptidesindicatethatthreepeptides;Spike259,Spike362

andSpike689,thatareinβ‐strandconformationinthefull‐lengthproteinareinhelicalconformation

asfreepeptides(Fig.1B).Oneofthepeptides(Spike599)waspredictedbyAlphafold2toberandom

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

3

coilandthemembranespanningpartwaspredictedtobeanα‐helix.Notethatthesequencesof

Spike362andSpike689havebeenN‐terminallymodifiedwithsolubilizingsequencestoenableproduc‐

tion.Alphafold2wasperformedonthesequencesinTabl e 1(Fig.1B).

Lyophilizedpeptidesweresolubilizedinhexa‐fluoroisopropanol(HFIP)andweredilutedinPBS‐buffer

(pH7.5)toafinalpeptideconcentrationof0.1mg/ml(10%HFIP)andmonitoredforinvitroamyloid

fibrilformationkineticsusingThT,Congoredbirefringence(CR)andnegativestaintransmissionelec‐

tronmicroscopy(TEM).Fibrilswereformedwithinafewhoursfrommostofthesyntheticpeptidesby

atleastonebutnotallassays(Table1,Fig.2).Spike191,Spike532andSpike1165fulfilledallouramyloid

criteria:sigmoidalThTkinetics,Congophilicityandfibrillarultrastructure(Fig.2,Tabl e 1).Inparticular,

Spike191formedexceptionallywell‐orderedfibrils(Fig.2C,Fig.3C).

Thesyntheticpeptideswerealsopreparedasamixtureofallsevenpeptideswithafinalconcentra‐

tionof0.1mg/mloftotalpeptide(concentrationofeachpeptide~0.014mg/ml).Themixtureofpep‐

tidesresultedinamyloidfibrilformationwithsigmoidalThTkineticssuggestinganucleationdependent

mechanism(Fig.3A).Thefibrilmorphologyfromthemixture(Fig.3B)mostcloselyresembledthatof

fibrilscomposedofthewell‐orderedSpike191(cf.Fig3B;Fig.3C),suggestingthatthispeptideisdom‐

inatingthefibrilstructuresinthemixture

WhatwouldbeaplausiblemechanismforS‐proteinfibrilformationinaSARS‐CoV‐2infectedpatient?

SARS‐CoV‐2S‐proteinisfairlystable(Tm>50°C)[10](seebelow)andwouldnotreadilydenaturespon‐

taneously.Also,suchalargeproteinwithcomplexfoldwillnoteasilymisfoldintoanamyloidstate.

However,proteolysisisanobviouscandidatemechanism.

Endoproteolysisofprecursorproteinsisawell‐knownmolecularinitiationmechanisminseveralam‐

yloidosesnotablyAlzheimer´sdisease(AβPP),BritishandDanishdementia(ABri/ADan),andFinnish

familialamyloidosis(AGel).Proteolysisofthefull‐lengthproteinisalsoevidentinmanyotheramyloid

diseasedepositsfromATTR,ALys,AA,ASem1[11,12].SARS‐CoV‐2S‐proteinisproteolyzedduringin‐

fectionbyhostfurin‐likeenzymesandbyserineproteasessuchasthetransmembraneprotease,serine

2(TMPRSS2),atthecellsurface[13].S‐proteinisfurtherproteolyzedduringinflammation.Neutrophils

arethedominatingclassofleucocytesandareoneofthefirstrespondersduringacuteinflammation.

Neutrophilsarerecruitedtothebronchoalveolarspaceofpatientsinfectedwitharangeofdifferent

respiratoryviruses,includingSARS‐CoV‐2[14].Neutrophilsactbothbyphagocytosisofopsonizedpath‐

ogensandbyextracellularreleaseofenzymessuchasneutrophilelastase(NE).NEisaserineprotease

coupledtoobstructivelungdiseasessuchascysticfibrosis,chronicobstructivepulmonarydisease

(COPD)[15]andalpha‐1‐antitrypsindeficiency[16].TheaminoacidsequenceofSARS‐CoV‐2S‐protein

wastestedwithinsilicoproteolyticcleavagebyNEusingExpasyPeptidecutter.Oneoftheresulting

peptides,Spike193‐212,wascloselymatchingpeptideSpike191,onlyframeshiftedby2aminoacids

(Supportinginformation3)implyingatestablehypothesis.

Wethereforesubjectedfull‐lengthSARS‐CoV‐2S‐proteintoNEcleavageinvitro.Wefirstdetermined

thattheS‐proteinwasfoldedbythermalunfoldingexperimentsbydifferentialscanningfluorimetry

(DSF)(Fig.4,SFig.3).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

4

Figure2.AmyloidfibrilassaysofSARS‐CoV‐2Speptides(0.1mg/ml).A.FibrilformationkineticsmonitoredbyThTfluo‐

rescence.B.Congoredstainingmicroscopywithopenandcrossedpolarizers.C.UltrastructurebynegativestainTEM

.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

5

Figure3.Amyloidfibrillationof7mixedSARS‐CoV‐2S‐peptides(totalconcentration0.1mg/ml).A.Fibrilformationkinet‐

icsmonitoredbyThTfluorescence.B.FibrillarstructuresbynegativestainTEM.C.Fibrillarstructuresbynegativestain

TEMofSpike191resemblingthemix

.

Figure4.S‐proteinproteolysisbyNErendersamyloid‐likefibrils.A.ThermostabilityoftheSARS‐CoV‐2S‐protein,B.NE

andC.S‐protein+NE,measuredbyDSF.ThedashedlineinCisthemathematicalsumofS‐proteinandNErespectively

fromAandBwhichdoesnotfittheexperimentaldata,supportingcleavageofS‐proteinbyNE.MALDI‐ToFspectraofC18

isolatedpeptidesofD.S‐protein,E.NE,andF.S‐protein+NE(6h,37°C).TEMmicrographsofG.S‐proteinalonedepicting

theexpectedtrimers[17]H.NEalone,andI.S‐proteinandNEco‐incubatedatpH8.4for24h,37°C.Clustersofamyloid‐

likebranchedfibrilswereformedintheco‐incubationexperimentinI.

S‐proteinshowedacomplexunfoldingtrajectorywithmultipletransitionsaround45‐65°C,andamajor

unfoldingtransitionwithamidpointofthermaldenaturation(Tm)79°C(Fig.4A,SFig3A),similarto

thatreportedforanotherfull‐lengthS‐proteinconstruct[17].S‐proteinrefoldeduponloweringthe

temperaturealbeitwithanon‐cooperativerefoldingtransition(Fig.4A).NEunfoldedirreversiblywith

atTmof59°C(Fig.4B).TheincubatedS‐protein+NEonlyshowedanobvioustransitionforNEanddid

notrefolduponloweringthetemperaturesuggestingthatS‐proteinhadbeencleavedbyNE(Fig.4C).

WeverifieddigestionbymassspectrometrywhereonlytheS‐protein+NEexperimentrevealedpep‐

tidepeaks(Fig.4D‐F).Mostimportantlywediscoveredamyloid‐likefibrilformationdependentonthis

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

6

proteolyticcleavagebyTEM.NeitherNEnorSARS‐CoV‐2S‐proteinincubatedaloneformedfibrils(Fig.

4G‐H).Fibrilswereonlyfoundafterco‐incubationofthetwoproteins(Fig.4I).Thefibrilshadanunu‐

sualmorphologywithevidentbranching(Fig.4I).Thismorphologysuggestsinvolvementofproteolyt‐

icallynickedS‐proteinwithinthefibrilrenderingnodesforbranchingofdifferentamyloidogenicse‐

quences(Fig.4I,SFig.4).To understandhowNEcleavedS‐proteinweperformedLC‐MS/MSanalysisof

peptidesformedafter1minand6hofdigestionat2:1excessofNEoverS‐protein.Wemapped98

identifiedNEcleavagepeptides(STable1)ontheS‐proteinstructureandclassedtheseintothree

groups:i)formedafter1min(Fig.5A,B),ii)formedafter1minandstillpresentafter6h(Fig.5A,C),

andiii)onlypresentafter6h(Fig.5A,D).Initialcleavageandfurtherdigestion(groupi)occurredmainly

withintheS2domainwithabundantcleavageoftheHRdomainsandintheC‐terminalpartofS1.NTD

andRBDweremuchlessaffected(Fig.5A).Threepersistentpeptidesformedafterinitialcleavage

(groupii)originatedfromNTDandRBD.Severalpeptidesonlyformedafter6hofincubation(group

iii).Strikinglythepeptidefromthesegment193‐202(FKNIDGYFKI,includedinSpike191)waspartof

thisgroupandwashighlyabundantafter6h(STable2).Comparedtotheamyloidogenicsequences

threepeptidescontainingsegmentsfromthesewereformedasfreepeptides(Spike191,Spike259,

Spike1165)stillpresentafter6hoursofco‐incubation,twoweredigestedearlyanddisappeared

(Spike532,Spike689),andtwowerelikelystillresidentintheparentnickedS‐protein(Spike362,

Spike599).Hencetheobservedformedbranchedfibrilsislikelycomposedofamixoffibrilsinitiated

byanamyloidogenicpeptideseedrecruitingnickedS‐proteinforelongationandbranching.

Figure5.NEcleavagesiteswithinfull‐lengthfoldedS‐protein.A.OverallmapofpeptidesidentifiedbyLC‐MS/MSincor‐

relationtotheamyloidogenicSpikepeptides(c.f.Fig.1andTable1)andtheS‐proteindomainstructure.Arrowsindicate

thelimitsofthecryo‐EMstructure27‐1146.Afteri)1min(red),ii)1minandstillpersistentat6h(magenta),iii)only

presentafter6hofincubation(blue).B‐D.thesamecolorcodeforcleavedpeptidegroupi‐iiimappedontotheprotomer

Cryo‐EMS‐proteinstructurePDBcode6VXX

.



.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

7

Whataretheimplicationsofourfindings?COVID‐19pathogenesisismultifactorialandcomplex[18].

SevereCOVID‐19includeacuterespiratorydistresssyndrome(ARDS)fromsevereinnateimmunesys‐

teminflammatoryreactionsresultinginlungdamage[19];Cytokinestorm[20];Heartdamage,includ‐

inginflammationoftheheartmuscle;Kidneydamage;Neurologicaldamage;Damagetothecirculatory

systemresultinginpoorbloodflow;Long‐COVIDsymptomsincludepersistentemotionalillnessand

othermentalhealthconditionsresemblingneurodegenerativediseases[18].

IthasbeenproposedthatsevereinflammatorydiseaseincludingARDSincombinationwithSARS‐

CoV‐2proteinaggregationmightinducesystemicAAamyloidosis[21].Neurotropiccolonizationand

cross‐seedingofS‐proteinamyloidfibrilstoinduceaggregationofhumanendogenousproteinshas

beendiscussedinthecontextofneurodegeneration[4].Notably,bloodclottingassociatedwithextra‐

cellularamyloidoticfibrillaraggregatesinthebloodstreamhavebeenreportedinaffectedCOVID‐19

patients[22].HypercoagulationandimpairedfibrinolysisweredemonstratedinexperimentallyS‐pro‐

teinspikedbloodplasmafromhealthydonors[22].Similarly,amyloidosisisassociatedwithcerebral

amyloidangiopathy,bloodcoagulationdisruption,fibrinolyticdisturbance[23,24]andFXIIKal‐

likrein/Kininactivationandthromboinflammation[25],suggestingpotentiallinksbetweenamyloido‐

genesisofS‐proteinandCOVID‐19phenotypes.

Inconclusion,wehereinproposedarathersimplemolecularmechanismforhowSARS‐CoV‐2S‐pro‐

teinendoproteolysisbyNEcanrenderexceptionallyamyloidogenicS‐peptidessuchassegment193‐

202,andexposureofmultipleamyloidogenicsegmentsinproteolyticallynickedS‐protein.Itispossible

thatotheramyloidogenicpeptidesandS‐proteinnickedbyotherproteasescouldbeinvolved.We

foundthatallcommoncoronavirusesinfectinghumanscontainamyloidogenicsequences(SFig.5A).

Nonetheless,themagnitudeofthediverseCOVID‐19symptomswasnotpreviouslyreported.Theseg‐

ment193‐212isuniqueforandSARS‐CoV‐2(SFig.5B),whichincombinationwithacuteinflammation

couldexplaintheputativeCOVID‐19associatedamyloidosis.

Furthermore,overthecourseoftheyear2021over8billiondosesofCOVID‐19vaccineshavebeen

administeredworldwide.MostdoseshaveprovidedSARS‐CoV‐2S‐proteinasmainantigen.Arecent

casereportdescribestheserendipitousdiscoveryofamyloidformationinahumanpatientlocallyat

thesiteofvaccinationandinaproximallymphnodewithin24hoursofthefirstdoseofmRNAvaccine

codingforS‐protein[26].Neutrophilrecruitmentandactivationatthesiteofvaccinationisexpected.

ThelocalizedamyloidwasdetectedbytheAβamyloidPETtracer18F‐Florbetabenalsoknowntobind

toAL,AAandATTRcardiacamyloidfibrils.Thereactantallegedamyloidogenicproteininthevaccinated

patientwasnotidentified.WetestedthefluorescentamyloidligandsCN‐PiB(fluorescentbenzothia‐

zoleanalogueofPittsburghcompoundB)andDF‐9(fluorescentstilbeneanalogueofFlorbetaben)and

foundstrongfluorescenceresponsetowardsSpike191fibrilsinvitro(SFig.6),supportingthepossibility

thatvaccineinducedS‐proteinderivedamyloiddepositionwasdetectedinthehumanPETimaging

casestudy[26].

IfthehereinproposedmechanismforS‐proteinamyloidformationisassociatedwithreportedcar‐

diac,‐blood,‐andnervoussystemdisordersincertainvaccinatedindividuals[27]isnotknown,neither

arethelong‐termconsequences,butisstronglyrecommendedtobeinvestigatedinthiscontext.

AUTHOR INFORMATION

*CorrespondingAuthors

SofieNyström[email protected],PerHammarström,[email protected]

AuthorContributions

‡Theresearchwasperformed,andmanuscriptwaswrittenwithequalcontributionsofbothauthors.

Bothauthorshavegivenapprovaltothefinalversionofthemanuscript.

FundingSources

ThisresearchwasfinancedbyTheSwedishResearchCouncilgrant#2019‐04405).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

8

ACKNOWLEDGMENT

WethankBjörnWallnerforgeneratingAlphafold2foldingpredictionsofthesyntheticpeptides,

XiongyuWuforsynthesisofCN‐PiB,andJunZhangforsynthesisofDF‐9.WeacknowledgetheuseLiU

core‐facilitiesProLinC,MedicalFacultyMicroscopyandProteomicscoreespeciallyMariaTurkinafor

collectionofexperimentaldata.

ABBREVIATIONS

CNS,centralnervoussystem;SARS‐CoV‐2,SevereAcuteRespiratorySyndromeCoronavirus‐2,S‐pro‐

tein;Spikeprotein,ThT,ThioflavinT;CN‐PiB,Cyano‐PittsburghcompoundB;TEM,transmissionelec‐

tronmicroscopy;DSF,Differentialscanningfluorimetry

REFERENCES

1.Munch,J.,etal.,Semen‐derivedamyloidfibrilsdrasticallyenhanceHIVinfection.Cell,2007.131(6):p.

1059‐71.

2.Tayeb‐Fligelman,E.,etal.,InhibitionofamyloidformationoftheNucleoproteinofSARS‐CoV‐2.bioRxiv,

2021.

3.Michiels,E.,F.Rousseau,andJ.Schymkowitz,Mechanismsandtherapeuticpotentialofinteractions

betweenhumanamyloidsandviruses.CellMolLifeSci,2021.78(6):p.2485‐2501.

4.Tavassoly,O.,F.Safavi,andI.Tavassoly,SeedingBrainProteinAggregationbySARS‐CoV‐2asa

PossibleLong‐TermComplicationofCOVID‐19Infection.ACSChemNeurosci,2020.11(22):p.3704‐

3706.

5.Zhang,S.M.,etal.,Identificationandapplicationofself‐bindingzipper‐likesequencesinSARS‐CoV

spikeprotein.IntJBiochemCellBiol,2018.101:p.103‐112.

6.Idrees,D.andV.Kumar,SARS‐CoV‐2spikeproteininteractionswithamyloidogenicproteins:Potential

cluestoneurodegeneration.BiochemBiophysResCommun,2021.554:p.94‐98.

7.Maurer‐Stroh,S.,etal.,Exploringthesequencedeterminantsofamyloidstructureusingposition‐

specificscoringmatrices.NatMethods,2010.7(3):p.237‐42.

8.Walls,A.C.,etal.,Structure,Function,andAntigenicityoftheSARS‐CoV‐2SpikeGlycoprotein.Cell,

2020.181(2):p.281‐292e6.

9.Jumper,J.,etal.,HighlyaccurateproteinstructurepredictionwithAlphaFold.Nature,2021.596(7873):

p.583‐589.

10.Upadhyay,V.,etal.,Receptorbinding,immuneescape,andproteinstabilitydirectthenaturalselection

ofSARS‐CoV‐2variants.JBiolChem,2021.297(4):p.101208.

11.Benson,M.D.,etal.,Amyloidnomenclature2020:updateandrecommendationsbytheInternational

SocietyofAmyloidosis(ISA)nomenclaturecommittee.Amyloid,2020.27(4):p.217‐222.

12.Sipe,J.D.,Amyloidproteins:thebetasheetconformationanddisease.2005,Weinheim:Wiley‐VCH;

[Chichester:JohnWiley,distributor].

13.Peacock,T.P.,etal.,ThefurincleavagesiteintheSARS‐CoV‐2spikeproteinisrequiredfortransmission

inferrets.NatMicrobiol,2021.6(7):p.899‐909.

14.Johansson,C.andF.C.M.Kirsebom,Neutrophilsinrespiratoryviralinfections.MucosalImmunol,2021.

14(4):p.815‐827.

15.Pandey,K.C.,S.De,andP.K.Mishra,RoleofProteasesinChronicObstructivePulmonaryDisease.Front

Pharmacol,2017.8:p.512.

16.Strnad,P.,N.G.McElvaney,andD.A.Lomas,Alpha1‐AntitrypsinDeficiency.NEnglJMed,2020.

382(15):p.1443‐1455.

17.Edwards,R.J.,etal.,ColdsensitivityoftheSARS‐CoV‐2spikeectodomain.NatStructMolBiol,2021.

28(2):p.128‐131.

18.Huang,C.,etal.,6‐monthconsequencesofCOVID‐19inpatientsdischargedfromhospital:acohort

study.Lancet,2021.397(10270):p.220‐232.

19.Lipcsey,M.,etal.,TheOutcomeofCriticallyIllCOVID‐19PatientsIsLinkedtoThromboinflammation

DominatedbytheKallikrein/KininSystem.FrontImmunol,2021.12:p.627579.

20.Gao,Y.M.,etal.,Cytokinestormsyndromeincoronavirusdisease2019:Anarrativereview.JIntern

Med,2021.289(2):p.147‐161.

21.Sinha,N.andA.K.Thakur,LikelihoodofamyloidformationinCOVID‐19‐inducedARDS.Trends

Microbiol,2021.29(11):p.967‐969.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

9

22.Grobbelaar,L.M.,etal.,SARS‐CoV‐2spikeproteinS1inducesfibrin(ogen)resistanttofibrinolysis:

implicationsformicroclotformationinCOVID‐19.BiosciRep,2021.41(8).

23.Hammarstrom,P.,Thebloodypathofamyloidsandprions.JThrombHaemost,2007.5(6):p.1136‐8.

24.Bouma,B.,etal.,Increasedplasmin‐alpha2‐antiplasminlevelsindicateactivationofthefibrinolytic

systeminsystemicamyloidoses.JThrombHaemost,2007.5(6):p.1139‐42.

25.Maas,C.,etal.,MisfoldedproteinsactivatefactorXIIinhumans,leadingtokallikreinformation

withoutinitiatingcoagulation.JClinInvest,2008.118(9):p.3208‐18.

26.Laudicella,R.,etal.,SubcutaneousUptakeon[18F]FlorbetabenPET/CT:aCaseReportofPossible

Amyloid‐BetaImmune‐ReactivityAfterCOVID‐19Vaccination.SNComprClinMed,2021:p.1‐3.

27.COVID‐19mRNAPfizer‐BioNTechVaccineAnalysisPrint.202117November2021[cited202129

November2021];Availablefrom:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/

1036445/COVID‐19_mRNA_Pfizer‐BioNTech_Vaccine_Analysis_Print_DLP_17.11.2021.pdf.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472920doi: bioRxiv preprint

Citations (2)

References (26)

 

… With regard to viruses, in particular SARS-CoV2, the ability of its proteins and protein fragments to amyloidogenesis is unlikely to be an artifact. Interestingly, for the S-protein, the ability of its fragment to form amyloid-like fibrils was confirmed experimentally [27]. Also, the . …

Peptide from NSP7 is able to form amyloid-like fibrils: artifact or challenge to drug design?

Preprint

Full-text available

  • Jun 2022

View

Show abstract

Effect of an Amyloidogenic SARS-COV-2 Protein Fragment on α-Synuclein Monomers and Fibrils

Article

  • May 2022

View

Show abstract

Recommendations

Discover more about: COVID-19

Project

Moose prion protein

Characterize the moose (Alces alces) prion protein and correlate its properties in relation to the individuals genotype, trace element levels, disease status, and geographical location. 

View project

Project

MOSBRI

MOSBRI aims to address the pressing need for a truly integrated and multi-methodological taskforce, offering the best up-to-date instrumentation and the best expertise available in Europe, to the b … [more]

View project

Project

amyloidosis

View project

Article

Full-text available

Amyloidogenesis of SARS-CoV-2 Spike Protein

May 2022 · Journal of the American Chemical Society

SARS-CoV-2 infection is associated with a surprising number of morbidities. Uncanny similarities with amyloid-disease associated blood coagulation and fibrinolytic disturbances together with neurologic and cardiac problems led us to investigate the amyloidogenicity of the SARS-CoV-2 spike protein (S-protein). Amyloid fibril assays of peptide library mixtures and theoretical predictions identified … [Show full abstract]View full-text

Article

The bloody path of amyloids and prions

July 2007 · Journal of Thrombosis and Haemostasis

Read more

Article

Full-text available

Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prion…

May 2015 · Scientific Reports

Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, … [Show full abstract]View full-text

Article

Truncation of ADAMTS13 by Plasmin Enhances Its Activity in Plasma

March 2018 · Thrombosis and Haemostasis

ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) cleaves von Willebrand Factor (VWF) multimers to control their thrombogenicity. The fibrinolytic enzyme plasmin can cleave VWF in a similar manner. However, plasmin can also cleave ADAMTS13, which ultimately inactivates it. This leaves the overall role of plasmin in primary haemostasis uncertain. We … [Show full abstract]Read more

Preprint

Protease Resistance of ex vivo Amyloid Fibrils implies the proteolytic Selection of disease-associat…

July 2021

Several studies recently showed that ex vivo fibrils from patient or animal tissue were structurally different from in vitro formed fibrils from the same polypeptide chain. Analysis of serum amyloid A (SAA) and Aβ-derived amyloid fibrils additionally revealed that ex vivo fibrils were more protease stable than in vitro fibrils. These observations gave rise to the proteolytic selection hypothesis … [Show full abstract]Read more



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Lion’s Mane Mushroom

Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, But it benefits growth of Essential Gut Flora, further enhancing your Vitality.



Our Formula includes:

Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity.

Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins.

Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system.

Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome.

Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function.

Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules. Today Be 100% Satisfied Or Receive A Full Money Back Guarantee Order Yours Today By Following This Link.

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.