Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
Story Views
Now:
Last hour:
Last 24 hours:
Total:

How coupling constant evolution could make itself visible as properties of preferred extremals?

% of readers think this story is Fact. Add your two cents.


Quantum classical correspondence states that all aspects of quantum states should have correlates in the geometry of preferred extremals. In particular, various elementary particle propagators should have a representation as properties of preferred extremals. This would allow to realize the old dream about being able to say something interesting about coupling constant evolution although it is not yet possible to calculate the M-matrices and U-matrix. Hitherto everything that has been said about coupling constant evolution has been rather speculative arguments except for the general vision that it reduces to a discrete evolution defined by p-adic length scales. General first principle definitions are much more valuable than ad hoc guesses even if the latter give rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quantum state code for its properties. These correlation functions should have counterparts in the geometry of preferred extremals. Even more: these classical counterparts for a given preferred extremal ought to be identical with the quantum correlation functions for the superposition of preferred extremals.

  1. The marvelous implication of quantum ergodicity would be that one could calculate everything solely classically using the classical intuition – the only intuition that we have. Quantum ergodicity would also solve the paradox raised by the quantum classical correspondence for momentum eigenstates. Any preferred extremal in their superposition defining momentum eigenstate should code for the momentum characterizing the superposition itself. This is indeed possible if every extremal in the superposition codes the momentum to the properties of classical correlation functions which are identical for all of them.

  2. The only manner to possibly achieve quantum ergodicity is in terms of the statistical properties of the preferred extremals. It should be possible to generalize the ergodic theorem stating that the properties of statistical ensemble are represented by single space-time evolution in the ensemble of time evolutions. Quantum superposition of classical worlds would effectively reduce to single classical world as far as classical correlation functions are considered. The notion of finite measurement resolution suggests that one must state this more precisely by adding that classical correlation functions are calculated in a given UV and IR resolutions meaning UV cutoff defined by the smallest CD and IR cutoff defined by the largest CD present.
  3. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so that this quantum ergodic theorem must be broken. In the case of the ordinary spin classes one has not only statistical average for a fixed Hamiltonian but a statistical average over Hamiltonians. There is a probability distribution over the coupling parameters appearing in the Hamiltonian. Maybe the quantum counterpart of this is needed to predict the physically measurable correlation functions.

Could this average be an ordinary classical statistical average over quantum states with different classical correlation functions? This kind of average is indeed taken in density matrix formalism. Or could it be that the square root of thermodynamics defined by ZEO actually gives automatically rise to this average? The eigenvalues of the “hermitian square root ” of the density matrix would code for components of the state characterized by different classical correlation functions. One could assign these contributions to different “phases”.

  • Quantum classical correspondence in statistical sense would be very much like holography (now individual classical state represents the entire quantum state). Quantum ergodicity would pose a rather strong constraint on quantum states. This symmetry principle could actually fix the spectrum of zero energy states to a high degree and fix therefore the M-matrices given by the product of hermitian square root of density matrix and unitary S-matrix and unitary U-matrix having M-matrices as its orthonormal rows.
  • In TGD inspired theory of consciousness the counterpart of quantum ergodicity is the postulate that the space-time geometry provides a symbolic representation for the quantum states and also for the contents of consciousness assignable to quantum jumps between quantum states. Quantum ergodicity would realize this strongly self-referential looking condition. The positive and negative energy parts of zero energy state would be analogous to the initial and final states of quantum jump and the classical correlation functions would code for the contents of consciousness like written formulas code for the thoughts of mathematician and provide a sensory feedback.

    How classical correlation functions should be defined?

    1. General Coordinate Invariance and Lorentz invariance are the basic constraints on the definition. These are achieved for the space-time regions with Minkowskian signature and 4-D M4 projection if linear Minkowski coordinates are used. This is equivalent with the contraction of the indices of tensor fields with the space-time projections of M4 Killing vector fields representing translations. Accepting ths generalization, there is no need to restrict oneself to 4-D M4 projection and one can also consider also Euclidian regions identifiable as lines of generalized Feynman diagrams.
  • Quantum ergodicity very probably however forces to restrict the consideration to Minkowskian and Euclidian space-time regions and various phases associated with them. Also CP2 Killing vector fields can be projected to space-time surface and give a representation for classical gluon fields. These in turn can be contracted with M4 Killing vectors giving rise to gluon fields as analogs of graviton fields but with second polarization index replaced with color index.

  • The standard definition for the correlation functions associated with classical time evolution is the appropriate starting point. The correlation function GXY(τ) for two dynamical variables X(t) and Y(t) is defined as the average GXY(τ)=∫T X(t)Y(t+τ)dt/T over an interval of length T, and one can also consider the limit T→ ∞. In the recent case one would replace kenotau with the difference m1-m2=m of M4 coordinates of two points at the preferred extremal and integrate over the points of the extremal to get the average. The finite time interval T is replaced with the volume of causal diamond in a given length scale. Zero energy state with given quantum numbers for positive and negative energy parts of the state defines the initial and final states between which the fields appearing in the correlation functions are defined.
  • What correlation functions should be considered? Certainly one could calculate correlation functions for the induced spinor connection given electro-weak propagators and correlation functions for CP2 Killing vector fields giving correlation functions for gluon fields using the description in terms of Killing vector fields. If one can uniquely separate from the Fourier transform uniquely a term of form Z/(p2-m2) by its momentum dependence, the coefficient Z can be identified as coupling constant squared for the corresponding gauge potential component and one can in principle deduce coupling constant evolution purely classically. One can imagine of calculating spinorial propagators for string world sheets in the same manner. Note that also the dependence on color quantum numbers would be present so that in principle all that is needed could be calculated for a single preferred extremal without the need to construct QFT limit and to introduce color quantum numbers of fermions as spin like quantum numbers (color quantum numbers corresponds to CP2 partial wave for the tip of the CD assigned with the particle).
  • What about Higgs like field? TGD in principle allows scalar and pseudo-scalars which could be called Higgs like states. These states are however not necessary for particle massivation although they can represent particle massivation and must do so if one assumes that QFT limit exist. p-Adic thermodynamics however describes particle massivation microscopically.
  • The problem is that Higgs like field does not seem to have any obvious space-time correlate. The trace of the second fundamental form is the obvious candidate but vanishes for preferred extremals which are both minimal surfaces and solutions of Einstein Maxwell equations with cosmological constant. If the string world sheets at which all spinor components except right handed neutrino are localized for the general solution ansatz of the modified Dirac equation, the corresponding second fundamental form at the level of imbedding space defines a candidate for classical Higgs field. A natural expectation is that string world sheets are minimal surfaces of space-time surface. In general they are however not minimal surfaces of the imbedding space so that one might achieve a microscopic definition of classical Higgs field and its vacuum expectation value as an average of one point correlation function over the string world sheet.


    Source:


    Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

    Anyone can join.
    Anyone can contribute.
    Anyone can become informed about their world.

    "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

    Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.


    LION'S MANE PRODUCT


    Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules


    Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.



    Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.


    Report abuse

      Comments

      Your Comments
      Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

      Total 2 comments
      • Anonymous

        what !

        • Anonymous

          Could you repeat it!

      MOST RECENT
      Load more ...

      SignUp

      Login

      Newsletter

      Email this story
      Email this story

      If you really want to ban this commenter, please write down the reason:

      If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.