Ask Ethan #14: The Highest Energy Particles in the Universe [Starts With A Bang]
“The results of my observation are best explained by the assumption that a radiation of very great penetrating power enters our atmosphere from above.” -Victor Hess
You might think of the largest and most powerful particle accelerators in the world — places like SLAC, Fermilab and the Large Hadron Collider — as the source of the highest energies we’ll ever see. But everything we’ve ever done hear on Earth has absolutely nothing on the natural Universe itself! For this week’s Ask Ethan, let’s take a look at the simple question of our reader David Hurn, who asks:
Ever since I was a young reader of the Fantastic Four I have wanted to know all about Cosmic Rays.
Can you help?
So, let’s take a look.
Even before the first human beings ever left Earth, it was widely known that up there, above the protection of the Earth’s atmosphere, outer space was filled with high-energy radiation. How did we know?
The first clues came from looking at one of the simplest electricity experiments you can do on Earth, involving an electroscope.
If you place an electric charge on one of these devices — where two conducting metal leafs are connected to another conductor — both leaves will gain the same electric charge, and repel one another as a result. You’d expect, over time, for the charge to dissipate into the surrounding air, so you might have the bright idea to isolate it as completely as possible, perhaps creating a vacuum around the electroscope.
But even if you do, the electroscope still slowly discharges! In fact, even if you placed lead shielding around the vacuum, it would still discharge, and experiments in the early 20th century showed that if you went to higher and higher altitudes, the discharge happened more quickly. A few scientists put forth the hypothesis that the discharge was happening because high-energy radiation — radiation with both extremely large penetrating power and an extraterrestrial origin — were responsible for this.
Well, you know the deal when it comes to science: you test it! So in 1912, Victor Hess conducted balloon-borne experiments to search for these high-energy cosmic particles, discovering them immediately in great abundance and becoming the father of cosmic rays.
The early detectors were remarkable in their simplicity: you set up some sort of emulsion (or later, a cloud chamber) that’s sensitive to charged particles passing through it and place a magnetic field around it. When a charged particle comes in, you can learn two extremely important things:
- The particle’s charge-to-mass ratio and
- its velocity,
simply dependent on how the particle’s track curves, something that’s a dead giveaway so long as you know the strength of the magnetic field you applied.
In the 1930s, a number of experiments — both in early terrestrial particle accelerators and via more sophisticated cosmic ray detectors — turned up some interesting information. For starters, the vast majority of cosmic ray particles (around 90%) were protons, which came in a wide range of energies, from a few mega-electron-Volts (MeV) all the way up to as high as they could be measured! The vast majority of the rest of them were alpha-particles, or helium nuclei with two protons and two neutrons, with comparable energies.
When these cosmic rays hit the top of the Earth’s atmosphere, they interacted with it, producing cascading reactions which created showers of high-energy particles, including two new ones: the positron — hypothesized in 1930 by Dirac, the antimatter counterpart of the electron with the same mass but a positive charge — and the muon, an unstable particle with the same charge as the electron but some 206 times heavier! The positron was discovered by Carl Anderson in 1932 and the muon by him and his student Seth Neddermeyer in 1936, but the first muon event was discovered by Paul Kunze a few years earlier, which history seems to have forgotten!
One of the most amazing things is that if you hold out your hand so that it’s parallel to the ground, about one muon passes through it every second.
Every muon that passes through your hand originates from a cosmic ray shower, and every single one that does so is a vindication of the theory of special relativity! You see, these muons are created at a typical altitude of about 100 km, but a muon’s mean lifetime is only about 2.2 microseconds! Even moving at the speed of light (299,792.458 km/sec), a muon would only travel about 660 meters before it decays. Yet because of time dilation — or the fact that particles moving close to the speed of light experience time passing at a slower rate from the point-of-view of a stationary outside observer — these fast-moving muons can travel all the way to the surface of the Earth before they decay, and that’s where muons on Earth originate!
Fast-forward to the present day, and it turns out that we’ve accurately measured both the abundance and energy spectrum of these cosmic particles!
Particles with about 100 GeV worth of energy and under are by far the most common, with about one 100 GeV particle (that’s 1011 eV) hitting every square-meter cross-section of our local region of space every second. Although higher-energy particles are still there, they’re far less frequent as we look to higher and higher energies. For example, by time you reach 10,000,000 GeV (or 1016 eV), you’re only getting one-per-square-meter each year, and for the highest energy ones, the ones at 5 × 1010 GeV (or 5 × 1019 eV), you’d need to build a square detector that measured about 10 kilometers on a side just to detect one particle of that energy per year!
Seems like a crazy idea, doesn’t it? And yet there’s an extraordinarily compelling reason that we’d want to do so: there should be a cutoff in the energies of cosmic rays, and a speed limit for protons in the Universe! You see, there might not be a limit to the energies we can give to protons in the Universe: you can accelerate charged particles using magnetic fields, and the largest, most active black holes in the Universe could give rise to protons with energies even greater than the ones we’ve observed!
But they have to travel through the Universe to reach us, and the Universe is filled with large amounts of cold, low-energy radiation: the cosmic microwave background!
The only places where the highest energy particles are created are around the most massive, active black holes in the Universe, all of which are far beyond our own galaxy. And if particles with energies in excess of 5 × 1010 GeV are created, they can only travel a few million light years – max — before one of these photons, left over from the Big Bang, interacts with it and causes it to produce a pion, radiating away the excess energy and falling down to this theoretical cosmic energy limit, known as the GZK cutoff. (More details here.)
So we did the only reasonable thing for physicists to do: we built a detector that ridiculously large and looked!
The Pierre Auger Observatory has done exactly this, verifying that cosmic rays exist up to but not over this incredibly high-energy threshold, a factor of about 10,000,000 larger than the energies reached at the LHC! This means the fastest protons we’ve ever seen evidence for in the Universe are moving almost at the speed-of-light, which is exactly 299,792,458 m/s, but just a tiny bit slower. How much slower?
The fastest protons — the ones just at the GZK cutoff — move at 299,792,457.999999999999918 meters-per-second, or if you raced a photon and one of these protons to the Andromeda galaxy and back, the photon would arrive a measly six seconds sooner than the proton would… after a journey of more than five million years! But these ultra-high-energy cosmic rays don’t come from Andromeda; they come from active galaxies with supermassive black holes like NGC 1275, which tend to be hundreds of millions or even billions of light years away.
We even know — thanks to NASA’s Interstellar Boundary Explorer (IBEX) — that there are about 10 times as many cosmic rays out there in deep space as we detect here on-and-around Earth, as the Sun’s heliosheath protects us from the vast majority of them!
And that’s the fantastic story of cosmic rays, including my favorite aspect of them: the highest energy particles in the Universe and the cosmic energy limit! So, David, you’re our third contest winner and we’ve got two more to go! If you’ve got a question you want answered (and a chance to win), ask your best ones here, and I’ll see you again for more about the natural wonders of the Universe next week!
Source: http://scienceblogs.com/startswithabang/2013/12/06/ask-ethan-14-the-highest-energy-particles-in-the-universe/
Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.
"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
LION'S MANE PRODUCT
Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules
Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.
Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.
