Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Laser Light to Power and Control Nanobot Photomotors

% of readers think this story is Fact. Add your two cents.


Scientists design light-driven motors to power future nanorobots.The photomotor could be applied wherever rapid nanoparticle transport is required: in new analytical and synthetic instruments, drug delivery systems, improved gene therapy strategies,as well as other applications.

Scientists from the Moscow Institute of Physics and Technology (MIPT), Semenov Institute of Chemical Physics of the Russian Academy of Sciences (ICP RAS), and Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine (ISC NASU) have proposed a model nanosized dipole photomotor based on the phenomenon of light-induced charge redistribution. Triggered by a laser pulse, this tiny device is capable of directed motion at a record speed and is powerful enough to carry a certain load. The research findings were published in the Journal of Chemical Physics.

“The unprecedented characteristics of dipole photomotors based on semiconductor nanoclusters offer the prospect of more than just addressing a certain scarcity of the translational photomotors family. These devices could actually be applied wherever rapid nanoparticle transport is required. In chemistry and physics, they could help develop new analytical and synthetic instruments, while in biology and medicine they could be used to deliver drugs to diseased tissues, improve gene therapy strategies, and so on,” says Prof. Leonid Trakhtenberg of the Department of Molecular and Chemical Physics at MIPT, who is the leader of the research team and the head of the Laboratory of Functional Nanocomposites at ICP RAS.

Prof. Trakhtenberg collaborated with Prof. Viktor Rozenbaum, who heads the Department of Theory of Nanostructured Systems at ISC NASU, to develop the theory of photoinduced molecular transport. This theory provides a framework for the design of nanomachines, whose motion can be controlled by a laser. The scientists have established the relationship between several model parameters (e.g., particle dimensions, photoexcitation conditions etc.) and the key performance characteristic of the device—its average velocity.

Brownian motors

Directed nanomotors have prototypes in nature. Living organisms make use of protein devices driven by external nonequilibrium processes of a different nature, which are known as Brownian, or molecular motors. They are capable of converting random Brownian motion into directed translational motion, reciprocation, or rotation. Brownian motors are involved in muscle contraction, cell mobility (flagellar motility of bacteria), and the intra- and intercellular transport of organelles and relatively large particles of various substances (e.g., phagocytosis, or “cell eating”, and elimination of metabolic waste products from the cell). These devices operate with an amazingly high efficiency approaching 100%.

“Understanding the underlying mechanisms of the operation of naturally occurring molecular motors enables us not only to replicate them but also to design new highly efficient multifunctional artificial devices that could eventually be applied in nanorobotics. For the last several decades, researchers and engineers in various fields have been working together and making some real progress towards the development of controllable nanomachines. The results of their work were recognized as a highly relevant achievement and a significant advance in science and technology, when the 2016 Nobel Prize in Chemistry was awarded ‘for the design and synthesis of molecular machines,’” says Prof. Rozenbaum.

A Brownian motor operates by switching between at least two discrete states, which is achieved by means of chemical reactions, thermal action, AC signals, or light pulses. In the latter case, the device is referred to as a photomotor.

About ten years ago, a model was developed to describe the work of a translational dipole photomotor that operates due to photoexcitation of the molecule (particle) into a state with a dipole moment different from that in the ground state. The larger the difference between the total dipole moments of the nanoparticle in the two energy states, the higher the average velocity and efficiency of the motor.

Laser triggering

The proposed motor is activated by a resonant laser pulse, which excites electrons in the cylinder-shaped semiconductor nanocluster causing a separation of charges and giving rise to an electrostatic interaction between the particle and the polar substrate. Subjecting the nanocylinder to periodic resonant laser pulses causes its potential energy in the field of the substrate to vary with time, which in turn enables directed motion (see diagram).
 
Credit: MIPT

Photomotors based on inorganic nanoparticles outperform their organic molecule based counterparts in terms of efficiency and average velocity. In a cylinder-shaped semiconductor nanocluster, the value of the dipole moment before irradiation is close to zero, but photoexcitation of an electron from the bulk to the surface gives rise to an enormous dipole moment (approx. 40 D for a cylinder with a height of ca 15 Å).

“Owing to the fact that the parameters of the device have been optimized, our proposed model photomotor based on a semiconductor nanocylinder moves at a record speed of 1 mm/s, which is approximately three orders of magnitude faster than similar models based on organic molecules or motor proteins in living organisms,” the authors of the study told us.

 

Contacts and sources: 
 Moscow Institute of Physics and Technology (MIPT)


Source: http://www.ineffableisland.com/2016/11/laser-light-to-power-and-control.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.