What Makes a Sand Dune Sing?
BIN NOTE: If by now you haven’t figured out that Facebook and Google are in cahoots with the corrupt government, then I feel for you, but for those who are well aware of the issues it’s high time you switched over to Seen.life. It is a website that is similar to Facebook but without all the censorship.
When solids flow like liquids they can make sand dunes sing, and they can also result in a potentially deadly avalanche. Cambridge researchers are studying the physics behind both of these phenomena, which could have applications in industries such as pharmaceuticals, oil and gas.
For Marco Polo, the desert could be a spooky place, filled with evil spirits. Writing in the 13th century, he described the famous singing sands, which “at times fill the air with the sounds of all kinds of musical instruments, and also of drums and the clash of arms.” But the low, loud rumbles coming from the dunes were not the work of spirits. They were the work of physics.
As grains of sand slide down the side of certain dunes, they create vibrations that can be heard for miles around. The sand avalanches trigger the dune’s natural resonance, but only when conditions are just right. It can’t be too humid, and the grains of sand need to be just the right size and contain silica. Only then will an avalanche cause the dunes to start singing.
An avalanche, whether it’s made of sand or snow, is an example of a granular flow, when solid particles flow like liquids, colliding, bouncing around, interacting, separating and coming back together again. Granular flow processes can be found everywhere from the world’s highest mountains to your morning bowl of cereal.
Dr Nathalie Vriend, a Royal Society Dorothy Hodgkin Research Fellow in the Department of Applied Mathematics and Theoretical Physics, is a specialist in granular flows. Her PhD research at the California Institute of Technology unraveled some of the physics at work in the same singing sands that mystified Marco Polo. At Cambridge, her research focuses both on sand dunes and on avalanches, and how to quantify their behavior, which can have practical applications in industries including pharmaceuticals, oil and gas. Vriend’s work relies as much upon laboratory experiments and fieldwork as it does on mathematical models.
“An avalanche can behave as a solid, liquid or gas, depending on various factors, which is what makes them so difficult to model mathematically,” says Vriend. “For me, modelling their behaviour starts with observation, which I then incorporate into a model – it’s nature where I get my inspiration from. That, and curiosity – I see something and I want to try to explain it.
Credit: dahu1.
Despite their somewhat chaotic nature, avalanches and other types of granular flows share some distinct patterns. Owing to a phenomenon known as segregation, larger particles tend to rise to the top in an avalanche, whereas smaller particles sink to the bottom, falling into the gaps between the larger particles. A similar phenomenon can be seen in your breakfast cereal: the smaller, tastier bits always seem to end up at the bottom of the bowl. Larger grains are also pushed to the side and the front, forcing the flow of the avalanche into channels.
Similar processes are at work in sand dunes. As wind blows across a dune, there is segregation of the individual grains of sand, as well as small avalanches taking place on the granular scale. But for a sand dune that is 40 m high, there are also processes taking place on the macro scale. The entire dune itself can move and race across the desert floor. Small dunes migrate faster than large dunes, as if playing a “catch me if you can game”.
Credit Matthew Arran.
How does this understanding of the anatomy and movement of a sand dune translate into practical applications? Understanding granular flows can be useful in the pharmaceutical industry, where two different active ingredients may need to be mixed properly before a pill is made. Granular flows are also highly relevant to the oil and gas exploration process, and with this in mind Vriend is working with Schlumberger, the oilfield services company.
Sand dunes are major sources of noise in seismic surveys for oil and gas in deserts, which are conducted to probe the location and size of underground oil and gas reserves. The surveys use an acoustic pulse from a source and carefully placed receivers at different points to listen to the signal that is received, which can then be used to calculate what is hidden underground. The problem encountered by surveyors is that the sand dunes are composed of loose sand and therefore have a much lower wave velocity than the rocky desert floor, and as a result they act as traps of wave energy: the energy keeps reverberating and creates a source of noise in the post-processing of the seismic surveys. As part of a secondment at Schlumberger, one of Vriend’s PhD students is performing numerical simulations to understand the origin and features of this noise.
Another industrial problem that Vriend’s group is currently working on is the phenomenon of ‘honking’ grain silos. As grains are let out of the bottom of a silo, the friction of the pellets on the walls of the silo makes a distinctive ‘honking’ sound. Annoying for the neighbours perhaps, but hardly dangerous. However, when the vibrations get loud enough, it can cause a resonance within the silo, leading to structural failure or collapse. Vriend’s students are attempting to understand what affects the way that silos honk, which could someday be used to minimise noise, or even to prevent collapse.
The phenomenon behind honking silos on a busy farm is similar to that which causes massive desert sand dunes to sing, although one could be perceived as an annoyance while the other is considered captivating. For Vriend, however, it’s the real-world observations and the opportunity to spend time in nature that motivate her.
She explains: “What I love about my research, whether it’s looking at silos or avalanches, is that you can observe it, see it, feel it, touch it.”
BIN NOTE: If by now you haven’t figured out that Facebook and Google are in cahoots with the corrupt government, then I feel for you, but for those who are well aware of the issues it’s high time you switched over to Seen.life. It is a website that is similar to Facebook but without all the censorship.
Source: http://www.ineffableisland.com/2016/11/what-makes-sand-dune-sing.html
Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.
"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
LION'S MANE PRODUCT
Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules
Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.
Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

What makes a Sand dune sing ? I don’t know , maybe a bad ass SandWich , some pecan Sandies and the Sandpipers in the background along with Carlos Sandtana singing Mister Sandman ?!!!
stupid people like you should not be seen nor heard