Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

NUS Researchers Achieve Major Breakthrough in Flexible Electronics

% of readers think this story is Fact. Add your two cents.


A team of scientists from the National University of Singapore has successfully developed conducting polymer films that can provide unprecedented ohmic contacts to give superior performance in plastic electronics, including organic light-emitting diodes, solar cells and transistors.

Semiconductors, which are the very basic components of electronic devices, have improved our lives in many ways. They can be found in lighting, displays, solar modules and microprocessors that are installed in almost all modern day devices, from mobile phones, washing machines, and cars, to the emerging Internet of Things. 

To innovate devices with better functionality and energy efficiency, researchers are constantly looking for better ways to make them, in particular from earth-abundant materials using eco-friendly processes. Plastic or organic electronics, which is made from organic carbon-based semiconductors, is one such group of technologies that can potentially provide flexible, light-weight, large-area and additively-manufactured devices, which are attractive for some types of applications.

Dr Png Rui-Qi (left), Mr Mervin Ang (middle) and Ms Cindy Tang (right) working on conducting polymers that can provide unprecedented ohmic contacts for better performance in a wide range of organic semiconductor devices. 

Photo credit: Seah Zong Long

To make high-performance devices however, good ohmic contacts with low electrical resistances are required to allow the maximum current to flow both ways between the electrode and the semiconductor layers. Recently, a team of scientists from the National University of Singapore (NUS) has successfully developed conducting polymer films that can provide unprecedented ohmic contacts to give superior performance in plastic electronics, including organic light-emitting diodes, solar cells and transistors. The research findings have been recently published in the journal Nature.

The key these researchers discovered is to be able to design polymer films with the desired extreme work functions needed to generally make ohmic contacts. Work function is the minimum amount of energy needed to liberate an electron from the film surface into vacuum. The researchers showed that work functions as high as 5.8 electron-volts and as low as 3.0 electron-volts can now be attained for films that can be processed from solutions at low cost.

“To design such materials, we developed the concept of doped conducting polymers with bonded ionic groups, in which the doped mobile charges – electrons and holes – cannot dissipate away because their counter-balancing ions are chemically bonded,” explained Dr Png Rui-Qi, a senior research fellow from the Department of Physics at the NUS Faculty of Science, who led the device research team. “As a result, these conducting polymers can remain stable despite their extreme work functions and provide the desired ohmic contacts.”

This breakthrough is the result of a collaboration with the materials chemistry team led by Associate Professor Chua Lay-Lay from the Department of Chemistry at the NUS Faculty of Science, the physics team led by Associate Professor Peter Ho from the Department of Physics from the same faculty, and scientists from Cambridge Display Technology Ltd, a subsidiary of Sumitomo Chemical Co., Ltd.

“The lack of a general approach to make ohmic contacts has been a key bottleneck in flexible electronics. Our work overcomes this challenge to open a path to better performance in a wide range of organic semiconductor devices,” explained Dr Png Rui-Qi. “We are particularly thrilled about this Singapore-led innovation,” she added.

Commenting on the significance of the work, Assoc Prof Chua said, “The close partnership of the chemists and physicists has made this innovation possible. We are now working with our industrial partner to further develop this technology.”

Contacts and sources:

National University of Singapore

Citation: Tang, C. G., Ang, M. C., Choo, K., Keerthi, V., Tan, J., Syafiqah, M. N., . . . Ho, P. K. (2016). Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature, 539(7630), 536-540. doi:10.1038/nature20133


Source: http://www.ineffableisland.com/2017/01/nus-researchers-achieve-major.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.