Online:
Visits:
Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Self Organizing Minerals and the Origin of Life

Friday, March 17, 2017 5:17
% of readers think this story is Fact. Add your two cents.

(Before It's News)

A team led by scientists from the Spanish National Research Council (CSIC) has confirmed that in natural alkaline waters characterised by a high pH, silica is capable of making complex self-assembling mineral structures. In the paper, which appears in the journal Science Advances, the team’s scientists suggest that silica-provoked self-organization would have been a common phenomenon on early Earth, as well as on planets like ours, where alkaline environments were widespread.

The scientists used water from the Ney Springs waters in California in the USA with pH values of over 10 to obtain -amongst other things- biomorphs: fully inorganic structures capable of assembling themselves. Their shape, texture and symmetry resemble that of living organisms, but to date they have only been obtained in a laboratory.

“We have discovered that, although not easily achieved, these fascinating inorganic mineral structures can also be obtained in natural alkaline waters. The conditions for the formation of these materials are really quite extreme. Today there are very few places in the world where water with these properties exists”, explains CSIC scientist, Juan Manuel García Ruiz, from the Andalusian Earth Sciences Institute (CSIC and the University of Granada), where biomorphs were discovered and named three decades ago.

Silica and carbonate biomorphs obtained in gel in the laboratory.

Credit: Juan Manuel García Ruiz

The “extremely high” pH values of the Ney waters are derived from serpentinization, a geological process known to generate abiotic organic molecules. “Waters of this type were widespread during the early stages of our planet’s formation, before life appeared, or when it was beginning”, says the CSIC scientist.

At the dawn of life

Specifically, the scientists have demonstrated three forms of mineral self-assembly. Firstly, biomorphs, which are formed by tiny particles of barium carbonate which grow with the help of silica. “They have no edges or angles, but rather smoothly curved surfaces. They are often indistinguishable from the characteristic forms of primitive organisms”, explains Garcia Ruiz.

Secondly, the scientists have obtained crystalline aggregates of calcium carbonate and amorphous silica, called mesocrystals, which mimic the complex textures of shells. And finally, they have also shown that another form of self-organization exists. This takes place in hollow tubes composed of hydrated metal silicate membranes. “These structures, known as ‘silica gardens’, are capable of catalysing prebiotic reactions derived from simple carbon molecules, such as formamide”, adds the CSIC researcher.

The results of the work may well be useful in the search for ancient life forms, both on Earth and on planets such as Mars. “Biomorphs have a similar morphology to the oldest remnants of life. Their chemical footprint is also similar, which indicates that mineral self-assembly could have played a significant role in the origins of life”, concludes Garcia Ruiz.

 

Contacts and sources:
Spanish National Research Council (CSIC)



Source: http://www.ineffableisland.com/2017/03/self-organizing-minerals-and-origin-of.html

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories
 

Featured

 

Top Global

 

Top Alternative

 

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.