Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Traveling” Droughts Now Predictable: They Are Like Slow Moving Hurricanes,

% of readers think this story is Fact. Add your two cents.


Droughts can travel hundreds to thousands of kilometers from where they started, like a slow-moving hurricane. A new study sheds light on how these droughts evolve in space and time, bringing vital new insight for water managers.
A small subset of the most intense droughts move across continents in predictable patterns, according a new study published in the journal Geophysical Research Letters by researchers in Austria and the United States. The study could help improve projections of future drought, allowing for more effective planning.

While most droughts tend to stay put near where they started, approximately 10% travel between 1,400 to 3,100 kilometers (depending on the continent), the study found. These traveling droughts also tend to be the largest and most severe ones, with the highest potential for damage to the agriculture, energy, water, and humanitarian aid sectors. 

“Most people think of a drought as a local or regional problem, but some intense droughts actually migrate, like a slow-motion hurricane on a timescale of months to years instead of days to weeks,” says Julio Herrera-Estrada, a graduate student in civil and environmental engineering at Princeton, who led the study.

The researchers analyzed drought data from 1979 to 2009, identifying 1,420 droughts worldwide. They found hotspots on each continent where a number of droughts had followed similar tracks. For example, in the southwestern United States, droughts tend to move from south to north. In Australia, the researchers found two drought hotspots and common directions of movement, one from the east coast in a northwest direction, the other from the central plains in a northeast direction.

Drought hotspots and movement directions identified in the new study.
Credit:  ©Julio Herrera-Estrada
What causes some droughts to travel remains unclear, but the data suggest that feedback between precipitation and evaporation in the atmosphere and land may play a role.

“This study also suggests that there might be specific tipping points in how large and how intense a drought is, beyond which it will carry on growing and intensifying,” said Justin Sheffield, a professor of hydrology and remote sensing at the University of Southampton. Sheffield was Herrera-Estrada’s advisor while serving as research scholar at Princeton.

While the initial onset of a drought remains difficult to predict, the new model could allow researchers to better predict how droughts will evolve and persist.

“This study used an innovative approach to study how droughts evolve in space and time simultaneously, to have a more comprehensive understanding of their behaviors and characteristics, which has not been possible from previous approaches,” says Yusuke Satoh, a researcher at the International Institute for Applied Systems Analysis (IIASA), who also worked on the study.

Credit: IIASA

The study also raises the importance of regional cooperation and of sharing information across borders, whether state or national. One example is the North American Drought Monitor, which brings together measurements and other information from Mexico, the US, and Canada, creating a comprehensive real-time monitoring system.

The researchers said the next step for the work is to examine why and how droughts travel by studying the feedback between evaporation and precipitation in greater detail. Herrera-Estrada also said he would like to analyze how drought behavior might be affected by climate change.

Herrera-Estrada worked on this project as a participant in the IIASA Young Scientists Summer Program.

Contacts and sources:
Yusuke SatohThe International Institute for Applied Systems Analysis (IIASA)

Citation:  Herrera-Estrada JE, Satoh Y, & Sheffield J (2017). Spatiotemporal Dynamics of Global Drought. Geophysical Research Letters: 1-25. DOI:10.1002/2016GL071768. (In Press)


Source: http://www.ineffableisland.com/2017/03/traveling-droughts-now-predictable-they.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.