Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Fundamental Advance Towards Synthetic Brain: Artificial Synapse Capable of Autonomous Learning

% of readers think this story is Fact. Add your two cents.


Researchers from France and the University of Arkansas have created an artificial synapse capable of autonomous learning, a component of artificial intelligence. The discovery opens the door to building large networks that operate in ways similar to the human brain.

One of the goals of biomimetics is to take inspiration from the functioning of the brain in order to design increasingly intelligent machines. This principle is already at work in information technology, in the form of the algorithms used for completing certain tasks, such as image recognition; this, for instance, is what Facebook uses to identify photos. However, the procedure consumes a lot of energy. 
 

Vincent Garcia (Unité mixte de physique CNRS/Thales) and his colleagues have just taken a step forward in this area by creating directly on a chip an artificial synapse that is capable of learning. They have also developed a physical model that explains this learning capacity. This discovery opens the way to creating a network of synapses and hence intelligent systems requiring less time and energy.

Artist’s impression of the electronic synapse: the particles represent electrons circulating through oxide, by analogy with neurotransmitters in biological synapses. The flow of electrons depends on the oxide’s ferroelectric domain structure, which is controlled by electric voltage pulses.

© Sören Boyn / CNRS/Thales physics joint research unit.

The brain learns when synapses make connections among neurons. The connections vary in strength, with a strong connection correlating to a strong memory and improved learning. It is a concept called synaptic plasticity, and researchers see it as a model to advance machine learning.
 
The results were published April 3 in the journal Nature Communications.

“People are interested in building artificial brain networks in the future,” said Bin Xu, a research associate in the University of Arkansas Department of Physics. “This research is a fundamental advance.”

Bin Xu

Credit: University of Arkansas

A team of French scientists designed and built an artificial synapse, called a memristor, made of an ultrathin ferroelectric tunnel junction that can be tuned for conductivity by voltage pulses. The material is sandwiched between electrodes, and the variability in its conductivity determines whether a strong or weak connection is made between the electrodes.
 
Our brain’s learning process is linked to our synapses, which serve as connections between our neurons. The more the synapse is stimulated, the more the connection is reinforced and learning improved. Researchers took inspiration from this mechanism to design an artificial synapse, called a memristor. This electronic nanocomponent consists of a thin ferroelectric layer sandwiched between two electrodes, and whose resistance can be tuned using voltage pulses similar to those in neurons. If the resistance is low the synaptic connection will be strong, and if the resistance is high the connection will be weak. This capacity to adapt its resistance enables the synapse to learn.
 
Although research focusing on these artificial synapses is central to the concerns of many laboratories, the functioning of these devices remained largely unknown. The researchers have succeeded, for the first time, in developing a physical model able to predict how they function. This understanding of the process will make it possible to create more complex systems, such as a series of artificial neurons interconnected by these memristors.

Xu and Laurent Bellaiche, distinguished professor in the U of A physics department, helped by providing a microscopic insight of how the device functions, which will enable future researchers to create larger, more powerful, self-learning networks.

Memristors are not new, but until now their working principles have not been well understood. The study provided a clear explanation of the physical mechanism underlying the artificial synapse. The University of Arkansas researchers conducted computer simulations that clarified the switching mechanism in the ferroelectric tunnel junctions, backing up the measurements conducted by the French scientists.

 

As part of the ULPEC H2020 European project, this discovery will be used for real-time shape recognition using an innovative camera1 : the pixels remain inactive, except when they see a change in the angle of vision. The data processing procedure will require less energy, and will take less time to detect the selected objects. The research involved teams from the CNRS/Thales physics joint research unit, the Laboratoire de l’intégration du matériau au système (CNRS/Université de Bordeaux/Bordeaux INP), the University of Arkansas (US), the Centre de nanosciences et nanotechnologies (CNRS/Université Paris-Sud), the Université d’Evry, and Thales.

Contacts and sources:
Bin Xu, research associate

University of Arkansas.  Fayetteville

Citation: Learning through ferroelectric domain dynamics in solid-state synapses
Nature Communications 8, Article number: 14736 (2017)
doi:10.1038/ncomms14736


Source: http://www.ineffableisland.com/2017/05/fundamental-advance-towards-synthetic.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.