Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Scientists Create a Stable One-Dimensional Metallic Material

% of readers think this story is Fact. Add your two cents.


Researchers have developed the world’s thinnest metallic nanowire, which could be used to miniaturise many of the electronic components we use every day.

The researchers, from the Universities of Cambridge and Warwick, have developed a wire made from a single string of tellurium atoms, making it a true one-dimensional material. These one-dimensional wires are produced inside extremely thin carbon nanotubes (CNTs) – hollow cylinders made of carbon atoms. The finished ‘extreme nanowires’ are less than a billionth of a metre in diameter – 10,000 times thinner than a human hair.

Artistic representation of one of the encapsulated tellurium nanowire types predicted by researchers.

Credit: Paulo Medeiros

A single string of atoms is as small as materials based on elements in the periodic table can get, making them potentially useful for semiconductors and other electronic applications. However, these strings can be unstable, as their atoms are constantly vibrating and, in the absence of a physical constraint, they can end up morphing into some other structure or disintegrating entirely.

According to the Cambridge researchers, encapsulating the nanowires is not only a useful method of making stable one-dimensional (1D) materials, it may be necessary to prevent them from disintegrating. The researchers have also shown that it is possible to alter the shape and electronic behaviour of the nanowires by varying the diameters of the tubes which encapsulate them. Their results are reported in the journal ACS Nano.

To make electronics faster and more powerful, more transistors need to be squeezed onto semiconductor chips. For the past 50 years, the number of transistors on a single chip has doubled every two years – this is known as Moore’s law. However, we are getting close to the limit of how small a transistor can be before quantum effects associated with individual atoms and electrons start to interfere with its normal operation. Researchers are currently investigating various ways of keeping up with Moore’s law, and in turn keeping up with our desire for faster, cheaper and more powerful electronics. One-dimensional materials could be one of the solutions to the challenge of miniaturisation.

The Cambridge researchers first used computer simulations to predict the types of geometric structures that would form if tellurium atoms were injected into nanotubes, and found that 1D wires could exist in such a scenario.

Later, lab-based tests, using the most advanced techniques for the synthesis and atomic-resolution visualisation of such extreme materials, were performed by the Warwick researchers to confirm the theoretical predictions. Not only were the researchers able to successfully ‘build’ stable 1D wires, but they found that changing the diameter of the nanotubes lead to changes in the properties of tellurium.

Tellurium normally behaves as a semiconductor, but when injected into carbon nanotubes and confined to one dimension, it starts behaving like a metal. Additionally, while the confinement provided by the CNTs can induce drastic changes in the way that tellurium behaves, the nanotubes themselves do not interact in any other way with the tellurium nanowires.

“When working with materials at very small scales such as this, the material of interest typically needs to be deposited onto a surface, but the problem is that these surfaces are normally very reactive,” said Paulo Medeiros of Cambridge’s Cavendish Laboratory, and the paper’s first author. “But carbon nanotubes are chemically quite inert, so they help solve one of the problems when trying to create truly one-dimensional materials.

“However, we’re just starting to understand the physics and chemistry of these systems – there’s still a lot of basic physics to be uncovered.”

 

Contacts and sources:
Sarah Collins

University of Cambridge

Citation: Paulo V. C. Medeiros et al. ‘Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated Inside Ultranarrow, Single-Walled Carbon Nanotubes.’ ACS Nano (2016). DOI: 10.1021/acsnano.7b02225


Source: http://www.ineffableisland.com/2017/06/scientists-create-stable-one.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.