Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Diamonds Show Earth Still Capable of ‘Superhot’ Surprises

% of readers think this story is Fact. Add your two cents.


Diamonds may be ‘forever’ but some may have formed more recently than geologists thought. A study of 26 diamonds, formed under extreme melting conditions in the Earth’s mantle, found two populations, one of which has geologically ‘young’ ages. The results show that certain volcanic events on Earth may still be able to create super-heated conditions previously thought to have only existed early in the planet’s history before it cooled. The findings may have implications for diamond prospecting.

Diamonds can be categorized by their inclusions: minerals trapped within the carbon crystal structure that give clues about the conditions and the rocks in which they formed. The studied diamonds contain harzburgitic inclusions, a type of peridotite ‒ the most common rock in Earth’s mantle ‒ which have experienced extreme temperatures and undergone very large amounts of melting.

Octaedral P-type diamond from Venetia with a garnet mineral inclusion. 
Credit: Michael Gress
The study led by researchers at the Vrije Universiteit (VU) Amsterdam used radioisotope analysis to date tiny inclusions trapped in diamonds from the Venetia mine in South Africa. Results showed that the diamonds had formed in at least two separate events. Nine of the diamonds had an age of around 3 billion years, and could be linked to volcanism caused by the break-up of an old continent that led to large-scale melting. However, surprisingly, ten diamonds were dated as just over a billion years old, correlating with a giant volcanic event at Umkondo in southern Zimbabwe, 1.1 billion years ago.

“Conventional thinking has been that the level of melting needed to create these diamonds could only happen early in the history of the Earth when it was much hotter. We show that this is not the case and that some harzburgitic diamonds are much younger than assumed. We propose that our younger set of diamonds formed in a special environment where a major plume from the deep mantle was raised towards the surface and underwent extensive melting as the pressure reduced,” said Janne Koornneef, who led the study, published today in Nature Communications.

Cathode luminiscence (CL) image of a polished diamond plate revealing the diamond’s growth history and showing the locality of mineral inclusions to be dated. 
Credit: Michael Gress

Gareth Davies, co-author of the study, commented, “This is a fascinating insight into the inner workings of planet Earth. While young diamonds are formed in other types of rocks and conditions in the mantle, it’s very unexpected to find harzburgitic diamonds linked to relatively recent geological activity. As harzburgitic rocks are important markers for diamond prospecting, the findings may have implications for the geological environments where we look for new diamond mines.”

Simplified geological map and cross-section cartoons. (a), (b), and (c) show the inferred relation between magmatic rocks in the region that result from large scale tectono-magmatic events, and the diamond growth events as recorded by the garnet inclusions in diamonds from Venetia (red star). Dashed black lines in (a) are international boundaries. (b) shows the formation of the diamonds dated 1.1 billion years through active upwelling of a plume of the hot, deep mantle. (c) shows the formation of the diamonds circa 3 billion years ago through passive upwelling associated with continental rifting. (b) and (c) are not to scale. Outlines of Umkondo outcrops after Hansen et al. 
Credit: Koornneef et al.
The analysis of the diamonds at VU Amsterdam was funded by Europlanet 2020 Research Infrastructure and the research was funded by the European Research Council. The De Beers Group of Companies donated the diamonds used in this study.

Contacts and sources:

Europlanet Media Centre

Citation:  ‘Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism,’ J.M. Koornneef, M.U. Gress, I.L. Chinn, H.A. Jelsma, J.W. Harris & G.R. Davies. Nature Communications 8, 10.1038/s41467-017-00564-x.


Source: http://www.ineffableisland.com/2017/09/diamonds-show-earth-still-capable-of.html



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 1 comment
    • 2QIK4U

      Whatever the crush rate is on fake diamonds should be able to translate into an average depth mixed with earths density for that perfect sweet spot level of diamonds anywhere. If you know how deep it is you should definitely find one? Just a quick thought…. Would have to be looked into but I think it would work..

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.