Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Potential 'Missing Link' in Chemistry That Led to Life on Earth Found

% of readers think this story is Fact. Add your two cents.


Chemists at The Scripps Research Institute (TSRI) have found a compound that may have been a crucial factor in the origins of life on Earth.

Origins-of-life researchers have hypothesized that a chemical reaction called phosphorylation may have been crucial for the assembly of three key ingredients in early life forms: short strands of nucleotides to store genetic information, short chains of amino acids (peptides) to do the main work of cells, and lipids to form encapsulating structures such as cell walls. Yet, no one has ever found a phosphorylating agent that was plausibly present on early Earth and could have produced these three classes of molecules side-by-side under the same realistic conditions.

TSRI chemists have now identified just such a compound: diamidophosphate (DAP).

“We suggest a phosphorylation chemistry that could have given rise, all in the same place, to oligonucleotides, oligopeptides, and the cell-like structures to enclose them,” said study senior author Ramanarayanan Krishnamurthy, Ph.D., associate professor of chemistry at TSRI. “That in turn would have allowed other chemistries that were not possible before, potentially leading to the first simple, cell-based living entities.”

The study, reported today in Nature Chemistry, is part of an ongoing effort by scientists around the world to find plausible routes for the epic journey from pre-biological chemistry to cell-based biochemistry.

Other researchers have described chemical reactions that might have enabled the phosphorylation of pre-biological molecules on the early Earth. But these scenarios have involved different phosphorylating agents for different types of molecule, as well as different and often uncommon reaction environments.

“It has been hard to imagine how these very different processes could have combined in the same place to yield the first primitive life forms,” said Krishnamurthy.

He and his team, including co-first authors Clémentine Gibard, Ph.D., Subhendu Bhowmik, Ph.D., and Megha Karki, Ph.D., all postdoctoral research associates at TSRI, showed first that DAP could phosphorylate each of the four nucleoside building blocks of RNA in water or a paste-like state under a wide range of temperatures and other conditions.

With the addition of the catalyst imidazole, a simple organic compound that was itself plausibly present on the early Earth, DAP’s activity also led to the appearance of short, RNA-like chains of these phosphorylated building blocks.

Moreover, DAP with water and imidazole efficiently phosphorylated the lipid building blocks glycerol and fatty acids, leading to the self-assembly of small phospho-lipid capsules called vesicles—primitive versions of cells.

DAP in water at room temperature also phosphorylated the amino acids glycine, aspartic acid and glutamic acid, and then helped link these molecules into short peptide chains (peptides are smaller versions of proteins).

Phosphorylation of the three classes of prebiological molecules produces the corresponding higher-order structures, oligonucleotides, peptides and vesicles.

Credit: Krishnamurthy Lab 
“With DAP and water and these mild conditions, you can get these three important classes of pre-biological molecules to come together and be transformed, creating the opportunity for them to interact together,” Krishnamurthy said.

Krishnamurthy and his colleagues have shown previously that DAP can efficiently phosphorylate a variety of simple sugars and thus help construct phosphorus-containing carbohydrates that would have been involved in early life forms. Their new work suggests that DAP could have had a much more central role in the origins of life.

“It reminds me of the Fairy Godmother in Cinderella, who waves a wand and ‘poof,’ ‘poof,’ ‘poof,’ everything simple is transformed into something more complex and interesting,” Krishnamurthy said.

DAP’s importance in kick-starting life on Earth could be hard to prove several billion years after the fact. Krishnamurthy noted, though, that key aspects of the molecule’s chemistry are still found in modern biology.

“DAP phosphorylates via the same phosphorus-nitrogen bond breakage and under the same conditions as protein kinases, which are ubiquitous in present-day life forms,” he said. “DAP’s phosphorylation chemistry also closely resembles what is seen in the reactions at the heart of every cell’s metabolic cycle.”

Krishnamurthy now plans to follow these leads, and he has also teamed with early-Earth geochemists to try to identify potential sources of DAP, or similarly acting phosphorus-nitrogen compounds, that were on the planet before life arose.

“There may have been minerals on the early Earth that released such phosphorus-nitrogen compounds under the right conditions,” he said. “Astronomers have found evidence for phosphorus-nitrogen compounds in the gas and dust of interstellar space, so it’s certainly plausible that such compounds were present on the early Earth and played a role in the emergence of the complex molecules of life.”

The other co-author of the paper, “Phosphorylation, Oligomerization and Self-assembly in Water Under Potential Prebiotic Conditions,” was Eun-Kyong Kim of TSRI.

Support for the research was provided by the Simons Foundation (grant 327124) and NASA (grant NNX14AP59G).

Contacts and sources:

Madeline McCurry-Schmidt

The Scripps Research Institute (TSRI)


Source: http://www.ineffableisland.com/2017/11/potential-missing-link-in-chemistry.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 7 comments
    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.