Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

New Desalination Method Offers Low Energy Alternative to Purify Salty Water

% of readers think this story is Fact. Add your two cents.


Providing safer drinking water to those in need may be a little easier. According to Penn State researchers, a new desalination technique is able to remove salt from water using less energy than previous methods.

“Globally, there is reduced access to fresh water,” said Bruce Logan, Evan Pugh University Professor in Engineering and the Stan and Flora Kappe Professor of Environmental Engineering. “More and more, the waters that are being used are impaired, either due to salt or other contaminants, so we are seeing an increasing need to rely on less optimal water sources.”

To combat this problem, Logan, and colleagues Christopher Gorski, assistant professor of environmental engineering, and Taeyoung Kim, post-doctoral scholar in environmental engineering, have come up with a desalination method called battery electrode deionization (BDI). BDI improves upon standard capacitive deionization (CDI) techniques by eliminating the regeneration stage and lowering the voltage required to complete the process.

A feed solution contained in a reservoir was separately fed to the two inlets of the flow cell using pumps, one desalinated and the other concentrated. This is achieved by applying electrical current to the flow cell through wires using a power source (not shown in this photo). The conductivity of the discharge was then measured using flow conductivity meters located at each outlet, which were monitored by computer.

Credit: Taeyoung Kim

Standard CDI techniques desalinate water by separating the water’s ions. A typical CDI cell consists of two electrodes attached on opposite sides of a flow channel. The electrodes capture the salt ions through electrical exchanges that occur when an electrical current is applied to the cell. The cell is then regenerated by releasing the salt ions in a second cycle by alternating the direction of the applied electrical current. Since CDI does not require membranes and has lower energy requirements than other popular methods, it is becoming a competitive technology for removing salt from water. The problem with CDI systems is that they are limited by low salt adsorption when using the typically applied 1.2 volts. Increasing the applied voltage does improve the salt adsorption, but it also increases the potential for unintended side reactions that waste energy and can create permanent electrode corrosion.

In the team’s newly developed BDI system, a custom-built flow cell utilizes two channels. The channels are separated by a membrane and two identical battery electrodes are secured at each end.

To test the cell’s effectiveness, the team fed each channel with a salty solution at a specified flow rate while applying a constant electrical current to the cell. Several current densities were used, depending on the number of membrane stacks. The researchers then reversed the cell voltage flow when it reached a low of −0.6 volts or a high of +0.6 volts.

The team discovered that the BDI system effectively removed the salt at levels consistent with CDI, while using only an applied voltage of 0.6 volts. Furthermore, the low voltage required and materials used helped prevent unwanted side reactions, achieved greater desalination abilities and consumed less energy than traditional CDI.

Since the team created simultaneous production of desalinated and concentrated water in two channels, it also circumvented the two-cycle approach, so the system no longer needs to go through the regeneration stage. Additionally, they found that stacking additional membranes between electrodes reduced energy consumption even further.

“Other people have talked about capturing energy from the second CDI cycle, but it’s really hard to do, and, therefore, it’s impractical,” Logan said. “Our system avoids that second regeneration step by just switching the captured flow by alternating the direction of the applied electrical current. That makes it very easy to operate, and it uses very little energy.”

Although the current configuration is not suited to desalinate extremely salty water such as seawater, the results show that the BDI technique could be effective as a low energy method for brackish, or slightly salty, water, such as groundwater, or for desalinating water before it enters treatment plants.

“There is nothing that inherently prevents its use with seawater, it’s just that as water gets saltier and saltier, there are other issues that we have to contend with, such as increased energy consumption and membrane fouling, that may reduce its utility relative to other approaches,” Logan said.

The researchers now plan to work on scaling up and improving the stability of the system.

“This is an innovative technology,” Logan said. “This is not something that is out there and commercialized. It’s something that is right at the cutting-edge of new ways to get salt out of water.”

This research was published in Environmental Science & Technology Letters in September. Funding was provided by the National Science Foundation, King Abdullah University of Science and Technology and Penn State University.

Contacts and sources:
Penn State College of Engineering


Source: http://www.ineffableisland.com/2018/01/new-desalination-method-offers-low.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.