Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Bio-Inspired Hydrogel Can Rapidly Switch To Rigid Plastic

% of readers think this story is Fact. Add your two cents.


A new material that stiffens 1,800-fold when exposed to heat could protect motorcyclists and racecar drivers during accidents.

The gel quickly becomes rigid and opaque when heated to 60°C, becoming strong enough to support the 10kg weight.
 
Credit: Nonoyama T. et al., Advanced Materials, November 18, 2019

Hokkaido University researchers have developed a hydrogel that does the opposite of what polymer-based materials, like plastic bottles, normally do: their material hardens when heated and softens when cooled. Their findings, published in the journal Advanced Materials, could lead to the fabrication of protective clothing items for traffic and sportsrelated accidents.

Takayuki Nonoyama and Jian Ping Gong of Hokkaido University and their colleagues were inspired by how proteins remain stable inside organisms that survive within extreme-heat environments, like hot springs and deep sea thermal vents. Normally, heat “denatures” proteins, altering their structure and breaking their bonds. But the proteins within thermophiles remain stable with heat thanks to enhanced electrostatic interactions such as ionic bonds.

The gel is soft and transparent at 25°C and cannot support a 10 kg weight (top panels) but it quickly becomes rigid and opaque when heated to 60°C, becoming strong enough to support the weight (bottom panels).

 

Credit: Nonoyama T. et al., Advanced Materials, November 18, 2019

The team developed an inexpensive, non-toxic polyacrylic gel based on this concept. A polyelectrolyte poly (acrylic acid) (PAAc) was immersed in a calcium acetate aqueous solution. PAAc on its own acts like any other polymer-based material and softens when heated. But when calcium acetate is added, PAAc’s side residues interact with the calcium acetate molecules, in a way similar to what happens inside thermophile proteins, causing PAAc to act very differently.

The team found that their originally uniform gel separates into a polymer dense “phase” and a polymer sparse one as the temperature rises. When it reaches to a critical temperature, in this case around 60°C, the dense phase undergoes significant dehydration which strengthens ionic bonds and hydrophobic interactions between polymer molecules. This causes the material to rapidly transform from a soft, transparent hydrogel to a rigid, opaque plastic.

Molecular structures and the mechanisms behind instant thermal hardening of the hydrogel.
 
Credit: Nonoyama T. et al., Advanced Materials, November 18, 2019

The heated material was 1,800 times stiffer, 80 times stronger, and 20 times tougher than the original hydrogel. The soft-to-rigid switching was completely reversible by alternatively heating and cooling the material. Moreover, the scientists could fine-tune the switching temperature by adjusting the concentration of the ingredients.

They then demonstrated a possible application of the material by combining it with a woven glass fabric. This new fabric was soft at room temperature, but when it was pulled against an asphalt surface for five seconds at a speed of 80 km/hour, the heat generated by the friction hardened the material with only minor abrasions forming on the contact surface.

 
The gel is soft and transparent at 25°C (left) but quickly becomes rigid and opaque when heated to 60°C. 
 
Credit:  Nonoyama T. et al., Advanced Materials, November 18, 2019
Takayuki Nonoyama says “Clothing made from similar fabric could be used to protect people during traffic or sports-related accidents, for example. Our material could also be used as a heat-absorbent window coating to keep indoor environments cooler.”

“This polymer gel can be easily made from versatile, inexpensive and non-toxic raw materials that are commonly found in daily life. Specifically, the polyacrylic acids are used in disposable diapers and calcium acetates are used in food additives,” Jian Ping Gong added. “Our study contributes to basic research on new temperature-responsive polymers, and to applied research on temperature-responsive smart materials.”

Takayuki Nonoyama of the research team at Hokkaido University.
 
Credit: Hokkaido University

Contacts and sources:
Naoki Namba
Institute for International Collaboration
Hokkaido University
 

Assistant Professor Takayuki Nonoyama
Faculty of Advanced Life Science
Global Station for Soft Matter
Global Institution for Collaborative Research and Education (GI-CoRE)
Hokkaido University

 


Source: http://www.ineffableisland.com/2019/12/bio-inspired-hydrogel-can-rapidly.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.