Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Last Hour:
Last 24 Hours:

Astronomers Find Giant, Previously Unseen Structure In Our Galaxy; Remnant Of An Eruption From A Supersized Black Hole At The Center Of Our Galaxy.

Tuesday, November 9, 2010 21:30
% of readers think this story is Fact. Add your two cents.

(Before It's News)

NASA’s Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way — a finding likened in terms of scale to the discovery of a new continent on Earth. The feature, which spans 50,000 light-years, may be the remnant of an eruption from a supersized black hole at the center of our galaxy. 
From end to end, the newly discovered gamma-ray bubbles extend 50,000 light-years, or roughly half of the Milky Way’s diameter, as shown in this illustration. Hints of the bubbles’ edges were first observed in X-rays (blue) by ROSAT, a Germany-led mission operating in the 1990s. The gamma rays mapped by Fermi (magenta) extend much farther from the galaxy’s plane. 

 Credit: NASA/GSFC
“What we see are two gamma-ray-emitting bubbles that extend 25,000 light-years north and south of the galactic center,” said Doug Finkbeiner, an astronomer at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., who first recognized the feature. “We don’t fully understand their nature or origin.”
At more than 100 degrees across, the structure spans more than half of the sky, from the constellation Virgo to the constellation Grus. It may be millions of years old.
A paper on the findings will appear in an upcoming issue of The Astrophysical Journal.
Finkbeiner and Harvard graduate students Meng Su and Tracy Slatyer revealed the bubbles by processing publicly available data from the satellite’s Large Area Telescope (LAT). Their work expanded on previous studies led by Greg Dobler at the Kavli Institute for Theoretical Physics in Santa Barbara, Calif.
Fermi’s Large Area Telescope is the most sensitive and highest-resolution gamma-ray detector ever orbited. Gamma rays are the highest-energy form of light.
A giant gamma-ray structure was discovered by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus.
Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

The structures eluded previous astronomers studying gamma rays due in part to the so-called diffuse emission — a fog of gamma rays that appears all over the sky. The emissions are caused by particles moving near the speed of light interacting with light and interstellar gas in the Milky Way.
The Fermi LAT team is constantly refining models to uncover new gamma-ray sources obscured by the diffuse emission. By using various estimates of the gamma-ray fog, including the Fermi team’s, Finkbeiner and his colleagues were able to subtract it from the LAT data and unveil the giant bubbles.
“The LAT team confirmed the existence of an extended structure in the direction of the inner part of the Milky Way and we’re in the process of performing a deeper analysis to better understand it,” said Simona Murgia, a Fermi research associate at the SLAC National Accelerator Laboratory in Menlo Park, Calif.
The researchers believe that an important process for producing the Milky Way’s gamma-ray fog, called inverse Compton scattering, also lights up the bubbles. In that process, electrons moving near the speed of light collide with low-energy light, such as radio or infrared photons. The collision increases the energy of the photons into the gamma-ray part of the electromagnetic spectrum.
The bubble emissions are much more energetic than the gamma-ray fog seen elsewhere in the Milky Way.
The bubbles display a spectrum with higher peak energies than the diffuse gamma-ray glow seen throughout the sky. In addition, the bubbles display sharp edges in Fermi LAT data. Both of these qualities suggest that the structure arose in a sudden, impulsive event.
Credit: NASA/DOE/Fermi LAT/D
The bubbles also appear to have well-defined edges. Taken together, the structure’s shape and emissions suggest that it was formed as a result of a large and relatively rapid energy release — the source of which remains a mystery, Finkbeiner noted.
One possibility includes a particle jet from the supermassive black hole at the galactic center. In many other galaxies, astronomers see fast particle jets powered by matter falling toward a central black hole. While there is no evidence that the Milky Way’s black hole sports such a jet today, it may have in the past.
The bubbles also may have formed as a result of gas outflows from a burst of star formation, perhaps the one that produced many massive star clusters in the Milky Way’s central light-years several million years ago.
“In other galaxies, we see that starbursts can drive enormous gas outflows,” said David Spergel at Princeton University in New Jersey. “Whatever the energy source behind these huge bubbles may be, it is connected to many deep questions in astrophysics.”
Finkbeiner noted that, in retrospect, hints of the bubbles appear in earlier spacecraft data, including the Germany-led Roentgen X-ray Satellite (ROSAT) and NASA’s Wilkinson Microwave Anisotropy Probe (WMAP).
This release is being issued jointly with NASA.
NASA’s Fermi Gamma Ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.
For more information, contact:
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics

Read more at Nano Patents and Innovations


Report abuse


Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Total 2 comments
Top Stories
Recent Stories



Top Global


Top Alternative




Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.