Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Galaxies Near The Speed Of Light!

% of readers think this story is Fact. Add your two cents.



“The only reason for time is so that everything doesn’t happen at once.” -Albert Einstein

Now that you know how many galaxies are in our expanding Universe, you might be wondering about their speeds.


After all, since the Universe is expanding, that means that the farther away a galaxy is from us, the faster it’s speeding away from us.


(Graph credit: Michael Rowan-Robinson.)

What’s more than that, since the expansion itself is accelerating, galaxies speed away from us ever faster as time progresses.

It should come as no surprise, then, that galaxies that we see moving away from us at high speeds have their light shifted into the red portion of the spectrum.


(Image credit: 2MASS Galaxy Redshift Catalog (XSCz).)

Well, that’s not such a big deal. We know why this happens: when objects that emit light move towards you, their wavelengths get compressed and the light appears bluer. When they move away from you, their wavelengths get stretched and the light appears redder.

And the faster this light source moves, the more severe the shift in wavelength.


(Image credit: Answers in Genesis? Really? Thanks for the image, I guess!)

But think about this for a moment. If an object appears to move away from you faster the farther away it is, aren’t we — at some point — going to start seeing objects moving away from us at recessional velocities approaching the speed of light?


(Image credit: Michael Rowan-Robinson, with an overlay by me.)

Well, you know that a number of things happen when you approach the speed of light: these are perhaps the two most counterintuitive things about special relativity.


(Images credit: M. Rulison.)

If you’re stationary and an object is moving — relative to you — at some significant fraction of the speed of light, you’ll notice two very bizarre things about this fast moving object: its length is contracted in the direction it’s moving, and time runs slow, or dilates, for the moving object!

You may immediately wonder if we can see this happening for distant galaxies!


(Image credit: NASA, ESA, S. Beckwith (STScI) and the HUDF Team.)

Well, the length contraction is going to be impossible to measure, because we can only measure lengths in the direction perpendicular to the line-of-sight, but the expansion away from us happens parallel to the line-of-sight. So that’s out.

But what about time dilation? Is that present, or not? Let’s think about what we expect first, based on what theory tells us.


(Image credit: Take 27 LTD. / Science Photo Library.)

The galaxy in question isn’t actually moving, relative to the objects in its local spacetime vicinity, at relativistic speeds; what’s actually going on is that the space between us and this distant galaxy is expanding. And that expansion of space is what stretches the wavelengths of the photons, making the light appear redder.


(Image is a still from Video, credit: Rob Knop.)

But when this light was emitted, the “time” from the peak-to-peak of each wave was much shorter than the time you’ll observe by time those peaks get to you. So even though the galaxy in question isn’t physically moving relativistically, you should still see time dilation. So can you? What would you look for?


(Image credit: AURA/STScI/NASA and the Hubble Heritage Team.)

For example, we know that spiral galaxies rotate; you might wonder if it’s possible to see their apparent rotations slow down. Unfortunately, the relationship between a galaxy’s brightness and its rotational speed is different in the past than it is today, because spiral galaxies evolve over time.


(Image credit: John Bahcall, Mike Disney, NASA and ESA.)

You might think to look at quasars, instead, since they’re extremely luminous objects and visible at great distances. However, as the main scientist who studies this notes, the environments in which these quasars reside and the sources of variability (e.g., gravitational microlensing) are not constants between very distant and more nearby quasars.

Gamma-ray bursts are another candidate, because you can see them so far away, but what we’d really like is a very well understood class of objects, with uniform properties over time, that we can observe at extremely high redshifts. If we can measure whether that time gets dilated (i.e., lengthened) or not, that should test this once and for all!


(Image credit: High-z Supernova Search Team.)

Type Ia supernovae! These objects have a very well-known and well-studied timescale over which they brighten, dim, and fade away.

It’s really remarkable; see for yourself.


(Image credit: S. Blondin and Max Stritzinger.)

So if we see a distant, highly redshifted supernova, its light-curve should be stretched out over a longer span of time!

What do we find?


(Image credit: S. Blondin et al.)

Believe it or not, we’ve got a bunch of them! The first one — a supernova moving away from us at nearly 50% the speed of light — came back in 1996! Then came another, and by time you get to today, we’ve got a whole slew of them, and can see, incontrovertibly, that time really does run slow for these distant galaxies!


(Image credit: Ned Wright, retrieved from here.)

The red line is the prediction without time dilation, the blue line is with. So this is really happening!

The amazing thing is, if there’s an observer in those galaxies with an ultra-powerful telescope, capable of viewing us, we’d appear to be running slow, while they move at normal speed to their own eyes!


So when you look at an ultra-deep, distant object, you’re not only seeing it billions of years in the past, you’re also seeing it in slow motion! And as you chew on that for awhile, know that billions of light years away, someone might see you chewing on it for a whole lot longer! Read the comments on this post…

Read more at Starts With A Bang


Source:



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 1 comment
    • Anonymous

      more “theory” posing as fact

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.