Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Quasar Viewed Like Never Before: APEX Takes Part In Sharpest Observation Ever

% of readers think this story is Fact. Add your two cents.


Telescopes in Chile, Hawaii, and Arizona reach sharpness 2 million times finer than human vision

This is an artist’s impression of the quasar 3C 279. Astronomers connected the Atacama Pathfinder Experiment (APEX), in Chile, to the Submillimeter Array (SMA) in Hawaii, USA, and the Submillimeter Telescope (SMT) in Arizona, USA, for the first time, to make the sharpest observations ever, of the center of a distant galaxy, the bright quasar 3C 279. Quasars are the very bright centres of distant galaxies that are powered by supermassive black holes. This quasar contains a black hole with a mass about one billion times that of the sun, and is so far from Earth that its light has taken more than 5 billion years to reach us. The team were able to probe scales of less than a light-year across the quasar — a remarkable achievement for a target that is billions of light-years away.

Credit: ESO/M. Kornmesser

Astronomers connected APEX, in Chile, to the Submillimeter Array (SMA) [3] in Hawaii, USA, and the Submillimeter Telescope (SMT) [4] in Arizona, USA. They were able to make the sharpest direct observation ever [5], of the centre of a distant galaxy, the bright quasar 3C 279, which contains a supermassive black hole with a mass about one billion times that of the Sun, and is so far from Earth that its light has taken more than 5 billion years to reach us. APEX is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. APEX is operated by ESO.

 
Positions of the telescopes used in the 1.3 mm VLBI observations of the quasar 3C 279: 

Credit: ESO

 
The telescopes were linked using a technique known as Very Long Baseline Interferometry (VLBI). Larger telescopes can make sharper observations, and interferometry allows multiple telescopes to act like a single telescope as large as the separation — or “baseline” — between them. Using VLBI, the sharpest observations can be achieved by making the separation between telescopes as large as possible. For their quasar observations, the team used the three telescopes to create an interferometer with transcontinental baseline lengths of 9447 km from Chile to Hawaii, 7174 km from Chile to Arizona and 4627 km from Arizona to Hawaii. Connecting APEX in Chile to the network was crucial, as it contributed the longest baselines.

The observations were made in radio waves with a wavelength of 1.3 millimetres. This is the first time observations at a wavelength as short as this have been made using such long baselines. The observations achieved a sharpness, or angular resolution, of just 28 microarcseconds — about 8 billionths of a degree. This represents the ability to distinguish details an amazing two million times sharper than human vision. Observations this sharp can probe scales of less than a light-year across the quasar — a remarkable achievement for a target that is billions of light-years away.

The observations represent a new milestone towards imaging supermassive black holes and the regions around them. In future it is planned to connect even more telescopes in this way to create the so-called Event Horizon Telescope. The Event Horizon Telescope will be able to image the shadow of the supermassive black hole in the centre of our Milky Way galaxy, as well as others in nearby galaxies. The shadow — a dark region seen against a brighter background — is caused by the bending of light by the black hole, and would be the first direct observational evidence for the existence of a black hole’s event horizon, the boundary from within which not even light can escape.

 
This is an artist’s impression of the quasar 3C 279. Astronomers connected the Atacama Pathfinder Experiment (APEX), in Chile, to the Submillimeter Array (SMA) in Hawaii, USA, and the Submillimeter Telescope (SMT) in Arizona, USA for the first time, to make the sharpest observations ever, of the centre of a distant galaxy, the bright quasar 3C 279. Quasars are the very bright centres of distant galaxies that are powered by supermassive black holes. This quasar contains a black hole with a mass about one billion times that of the Sun, and is so far from Earth that its light has taken more than 5 billion years to reach us. The team were able to probe scales of less than a light-year across the quasar — a remarkable achievement for a target that is billions of light-years away.

Credit: ESO/M. Kornmesser

The experiment marks the first time that APEX has taken part in VLBI observations, and is the culmination of three years hard work at APEX’s high altitude site on the 5000-metre plateau of Chajnantor in the Chilean Andes, where the atmospheric pressure is only about half that at sea level. To make APEX ready for VLBI, scientists from Germany and Sweden installed new digital data acquisition systems, a very precise atomic clock, and pressurised data recorders capable of recording 4 gigabits per second for many hours under challenging environmental conditions [6]. The data — 4 terabytes from each telescope — were shipped to Germany on hard drives and processed at the Max Planck Institute for Radio Astronomy in Bonn.

The successful addition of APEX is also important for another reason. It shares its location and many aspects of its technology with the new Atacama Large Millimeter/submillimeter Array (ALMA) telescope [7]. ALMA is currently under construction and will finally consist of 54 dishes with the same 12-metre diameter as APEX, plus 12 smaller dishes with a diameter of 7 metres. The possibility of connecting ALMA to the network is currently being studied. With the vastly increased collecting area of ALMA’s dishes, the observations could achieve 10 times better sensitivity than these initial tests. This would put the shadow of the Milky Way’s supermassive black hole within reach for future observations.



Contacts and sources:
Douglas Pierce-Price
ESO 


Notes

[1] APEX is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a pathfinder for the next-generation submillimetre telescope, the Atacama Large Millimeter/submillimeter Array (ALMA), which is being built and operated on the same plateau.

[2] The Event Horizon Telescope project is an international collaboration, coordinated by the MIT Haystack Observatory (USA).

[3] The Submillimeter Array (SMA) on Mauna Kea, Hawaii, consisting of 8 dishes of 6 m diameter each, is operated by the Smithsonian Astrophysical Observatory (USA) and the Academia Sinica Institute of Astronomy and Astrophysics (Taiwan).

[4] The Submillimeter Telescope (SMT) of 10 m diameter on top of Mount Graham, Arizona, is operated by the Arizona Radio Observatory (ARO) in Tucson, Arizona (USA).

[5] Some indirect techniques have been used to probe finer scales, for example using microlensing (see heic1116 – http://www.spacetelescope.org/news/heic1116/) or interstellar scintillation, but this is a record for direct observations.

[6] These systems were developed in parallel in the USA (MIT-Haystack observatory) and in Europe (MPIfR, INAF — Istituto di Radioastronomia Noto VLBI Station, and HAT-Lab). A hydrogen maser time standard (T4Science) was installed as the very precise atomic clock. The SMT and SMA had already been equipped similarly for VLBI.

[7] The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA.


Read more at Nano Patents and Innovations


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.