Asteroid Belts at the Right Place Needed for Complex Life?
read more at Anne’s Astronomy News http://annesastronomynews.com/
Solar systems with life-bearing planets may be rare if they are dependent on the presence of asteroid belts of just the right mass, according to a study by Rebecca Martin, a NASA Sagan Fellow from the University of Colorado in Boulder, and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore, Md.
There are three possible scenarios for the evolution of asteroid belts. This illustration shows a Jupiter-size planet migrates through the asteroid belt, scattering material and inhibiting the formation of life on planets. Image Credit: NASA/ESA/STScI
They suggest that the size and location of an asteroid belt, shaped by the evolution of the sun’s planet-forming disk and by the gravitational influence of a nearby giant Jupiter-like planet, may determine whether complex life will evolve on an Earth-like planet.
This might sound surprising because asteroids are considered a nuisance due to their potential to impact Earth and trigger mass extinctions. But an emerging view proposes that asteroid collisions with planets may provide a boost to the birth and evolution of complex life.
Asteroids may have delivered water and organic compounds to the early Earth. According to the theory of punctuated equilibrium, occasional asteroid impacts might accelerate the rate of biological evolution by disrupting a planet’s environment to the point where species must try new adaptation strategies.
The astronomers based their conclusion on an analysis of theoretical models and archival observations, including infrared data from NASA’s Spitzer Space Telescope.
This illustration shows our Solar System model: a Jupiter-size planet that moves slightly inward but is just outside the asteroid belt. New research based on an analysis of theoretical models and archival observations, including infrared data from NASA’s Spitzer Space Telescope, suggests that this scenario may also be important for the development of life in other solar systems. Image Credit: NASA/ESA/STScI
“Our study shows that only a tiny fraction of planetary systems observed to date seem to have giant planets in the right location to produce an asteroid belt of the appropriate size, offering the potential for life on a nearby rocky planet,” said Martin, the study’s lead author. “Our study suggests that our Solar System may be rather special.”
The findings will appear today in the Monthly Notices of the Royal Astronomical Society: Letters.
Martin and Livio suggest that the location of an asteroid belt relative to a Jupiter-like planet is not an accident. The asteroid belt in our Solar System, located between Mars and Jupiter, is a region of millions of space rocks that sits near the “snow line,” which marks the border of a cold region where volatile material such as water ice is far enough from the Sun to remain intact. When Jupiter formed just beyond the snow line, its powerful gravity prevented nearby material inside its orbit from coalescing and building planets.
Instead, Jupiter’s influence caused the material to collide and break apart. These fragmented rocks settled into an asteroid belt around the Sun.
In this illustration, a large planet does not migrate at all, creating a massive asteroid belt. Material from the hefty asteroid belt would bombard planets, possibly preventing life from evolving. Image Credit: NASA/ESA/STScI
“To have such ideal conditions you need a giant planet like Jupiter that is just outside the asteroid belt [and] that migrated a little bit, but not through the belt,” Livio explained. “If a large planet like Jupiter migrates through the belt, it would scatter the material. If, on the other hand, a large planet did not migrate at all, that, too, is not good because the asteroid belt would be too massive. There would be so much bombardment from asteroids that life may never evolve.”
Using our Solar System as a model, Martin and Livio proposed that asteroid belts in other solar systems would always be located approximately at the snow line. To test their proposal, Martin and Livio created models of planet-forming disks around young stars and calculated the location of the snow line in those disks based on the mass of the central star.
They then looked at all the existing space-based infrared observations from the Spitzer Space Telescope of 90 stars having warm dust, which could indicate the presence of an asteroid belt-like structure. The temperature of the warm dust was consistent with that of the snow line. “The warm dust falls right onto our calculated snow lines, so the observations are consistent with our predictions,” Martin said.
The duo then studied observations of the 520 giant planets found outside our Solar System. Only 19 of them reside outside the snow line. This suggests that most of the giant planets that may have formed outside the snowline have migrated too far inward to preserve the kind of slightly dispersed asteroid belt needed to foster enhanced evolution of life on an Earth-like planet near the belt. Apparently, less than four percent of the observed systems may actually harbor such a compact asteroid belt.
“Based on our scenario, we should concentrate our efforts to look for complex life in systems that have a giant planet outside of the snow line,” Livio said.
Source: Jet Propulsion Laboratory (JPL)
n/a
2012-11-02 13:40:36
Source: http://annesastronomynews.com/asteroid-belts-at-the-right-place-needed-for-complex-life/
Source:
Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.
"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
LION'S MANE PRODUCT
Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules
Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.
Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.
