Video: Today's Warp Speed: X-51A Waverider Makes History At Mach 5.1
The final flight of the X-51A Waverider test program has accomplished a breakthrough in the development of flight reaching Mach 5.1 over the Pacific Ocean on May 1 a little after 10 a.m. Pacific Time.
“It was a full mission success,” said Charlie Brink, X-51A program manager for the Air Force Research Laboratory Aerospace Systems Directorate.
The cruiser traveled over 230 nautical miles in just over six minutes over the Point Mugu Naval Air Warfare Center Sea Range. It was the longest of the four X-51A test flights and the longest air-breathing hypersonic flight ever.
“I believe all we have learned from the X-51A Waverider will serve as the bedrock for future hypersonics research and ultimately the practical application of hypersonic flight,” Mr. Brink said.
The X-51A took off from the Air Force Test Center at Edwards AFB, Calif., under the wing of a B-52H Stratofortress. It was released at approximately 50,000 feet and accelerated to Mach 4.8 in about 26 seconds powered by a solid rocket booster. After separating from the booster, the cruiser’s scramjet engine then lit and accelerated to Mach 5.1 at 60,000 feet.
After exhausting its 240-second fuel supply, the vehicle continued to send back telemetry data until it splashed down into the ocean and was destroyed as designed. All told, 370 seconds of data was collected from the experiment.
“This success is the result of a lot of hard work by an incredible team. The contributions of Boeing, Pratt and Whitney Rocketdyne, the 412th Test Wing at Edwards AFB, NASA Dryden and DARPA were all vital,” said Mr. Brink.
An X-51A WaveRider hypersonic flight test vehicle is uploaded to an Air Force Flight Test Center B-52 for fit testing at Edwards Air Force Base on July 17, 2009. Four scramjet-powered Waveriders were built for the Air Force. The Air Force Research Laboratory, DARPA, Pratt & Whitney Rocketdyne, and Boeing are partners on the X-51A technology demonstrator program.
Credit: U.S. Air Force photo/Chad Bella
This was the last of four test vehicles originally conceived when the $300 million technology demonstration program began in 2004. The program objective was to prove the viability of air-breathing, high-speed scramjet propulsion.
The X-51A is unique primarily due to its use of a hydrocarbon fuel in its supersonic combustion ramjet, or Scramjet, engine. Other vehicles have achieved hypersonic – generally defined as speeds above Mach 5 – flight with the use of hydrogen fuel. Without any moving parts, hydrocarbon fuel is injected into the scramjet’s combustion chamber where it mixes with the air rushing through the chamber and is ignited in a process likened to lighting a match in a hurricane.
The use of logistically supportable hydrocarbon fuel is widely considered vital for the practical application of hypersonic flight.
As a technology demonstration program, there is no immediate successor to the X-51A program. However, the Air Force will continue hypersonic research and the successes of the X-51A will pay dividends to the High Speed Strike Weapon program currently in its early formation phase with AFRL.
Features
The X-51A is designed to be launched from an airborne B-52 Stratofortress bomber. The flight test vehicle stack is approximately 25 feet long and includes a modified solid rocket booster from an Army Tactical Missile, a connecting interstage, and the X-51A cruiser. The nearly wingless cruiser is designed to ride its own shockwave, thus the nickname, Waverider. The distinctive, shark-nosed cruiser has small controllable fins and houses the heart of the system, an SJY61 supersonic combustion ramjet or scramjet engine built by Pratt & Whitney Rocketdyne designed to burn JP-7 jet fuel. Boeing’s Phantom Works performed overall air vehicle design, assembly and testing for the X-51′s various component systems.
The X-51 was made primarily using standard aerospace materials such as aluminum, steel, inconel, and titanium. Some carbon/carbon composites of the leading edges of fins and cowls are used. For thermal protection, the vehicle utilizes a Boeing designed silica-based thermal protection system as well as Boeing Reusable Insulation tiles, similar to those on board the NASA Space Shuttle Orbiters.
Four X-51As were built for the Air Force. The X-51A program is a technology demonstrator and was not designed to be a prototype for weapon system. It was designed to pave the way to future hypersonic weapons, hypersonic intelligence, surveillance and reconnaissance, and future access to space. Since scramjets are able to burn atmospheric oxygen, they don’t need to carry large fuel tanks containing oxidizer like conventional rockets, and are being explored as a way to more efficiently launch payloads into orbit.
In addition to scalable scramjet propulsion, other key technologies that will be demonstrated by the X-51A include thermal protection systems materials, airframe and engine integration, and high-speed stability and control.
Background
The X-51A represents one of the service’s most significant reinvestments in hypersonic flight since the rocket-powered X-15 program which flew 50 years earlier.
Air Force officials anticipate the X-51A program will provide a foundation of knowledge required to develop the game changing technologies needed for future access to space and hypersonic weapon applications. For example, hypersonic speeds on the order of flying 600 nautical miles in 10 minutes may provide the ability to accurately engage a long-distance target very rapidly.
The X-51A program is a collaborative effort of the Air Force Research Laboratory and the Defense Advanced Research Projects Agency, with industry partners The Boeing Company and Pratt & Whitney Rocketdyne. Program management is accomplished by the Air Force Research Laboratory Propulsion Directorate at Wright-Patterson Air Force Base, Ohio.
Hypersonic flight, normally defined as beginning at Mach 5, five times the speed of sound, presents unique technical challenges with heat and pressure, which make conventional turbine engines impractical. Program officials said producing thrust with a scramjet has been compared to lighting a match in a hurricane and keeping it burning.
The Air Force currently plans to fly each X-51A on identical flight profiles. Like the X-15, the X-51A is designed to be carried aloft by a B-52 mother ship launched from the Air Force Flight Test Center at Edwards Air Force Base, Calif. It is released at approximately 50,000 feet over the Pacific Ocean Point Mugu Naval Air Warfare Center Sea Range. The solid rocket booster accelerates the X-51A for 30 seconds to approximately Mach 4.5, before being jettisoned. Then the cruiser’s scramjet engine, remarkable because it has virtually no moving parts, ignites. The ignition sequence begins burning ethylene, transitioning over approximately 10 seconds to the same JP-7 jet fuel once used by the SR-71 Blackbird.
Powered by its scramjet engine, the X-51A will accelerate to approximately Mach 6 as it climbs to nearly 70,000 feet. Hypersonic combustion generates intense heat so routing of the engine’s own JP-7 fuel will serve to both cool the engine and heat the fuel to optimum operating temperature for combustion. The fuel load and flight profile provides for a 240-second engine burn, transmitting vast amounts of telemetry data on its systems to orbiting aircraft and ground stations, before the vehicle exhausts its fuel supply, splashes down into the Pacific and is destroyed, as planned. Flight test vehicles are not recovered.
The X-51A development team elected from the outset not to build recovery systems in the flight test vehicles, in an effort to control costs and focus funding on the vehicle’s fuel-cooled scramjet engine. A U.S. Navy P-3 Orion aids in transmitting telemetry data to engineers at both Naval Air Station Point Mugu and Vandenberg AFB, Calif., before it arrives at its final destination, the Ridley Mission Control Center at Edwards AFB.
Conceived in 2004, the X-51A made its first “captive carry” flight Dec. 9, 2009. The flight test verified the B-52′s high-altitude performance and handling qualities with the X-51 attached and tested communications and telemetry systems, but the vehicle remained attached to the B-52s wing.
The X-51A made history during its first supersonic combustion ramjet-powered hypersonic flight May 26, 2010, off the southern California Pacific coast. Officials said the flight test vehicle flew as anticipated for nearly 200 seconds, with the scramjet accelerating the vehicle to approximately Mach 5, nearly 3,400 miles per hour. The fuel-cooled scramjet performed as planned transmitting normal telemetry for more than 140 seconds, then observing a decrease in thrust and acceleration for another 30 seconds. An anomaly then resulted in a loss of telemetry, and the test was terminated and vehicle was destroyed by flight controllers on command.
Despite the anomaly, the May 26 flight is considered the first use of a practical hydrocarbon fueled scramjet in flight. The longest previous hypersonic scramjet flight test performed by a NASA X-43 in 2004 was faster, but lasted only about 12 seconds and used less logistically supportable hydrogen fuel.
Following an extensive analysis of flight data from the X-51A’s first hypersonic flight test, slight modifications are planned to strengthen the rear seal area near the engine exhaust nozzles for the three remaining X-51As.
The next two X-51A flights ended prematurely. The second vehicle was boosted by the rocket to just over Mach 5, separated and lit the scramjet on ethylene. When the vehicle attempted to transition to JP7 fuel operation, it experienced an inlet un-start. The hypersonic vehicle attempted to restart and oriented itself to optimize engine start conditions, but was unsuccessful. The vehicle continued in a controlled flight orientation until it flew into the ocean within the test range.
The third X-51A safely separated from the B-52, however after 16 seconds under the rocket booster, a fault was identified with one of the cruiser control fins. Once the X-51 separated from the rocket booster, approximately 15 seconds later, the cruiser was not able to maintain control due to the faulty control fin and was lost.
The final flight of the X-51A occurred May 1, 2013 and was the most successful in terms of meeting all the experiment objectives. The cruiser traveled more than 230 nautical miles in just over six minutes reaching a peak speed of Mach 5.1.
Overall the more than 9 minutes of data collected from the X-51A program was an unprecedented achievement proving the viability of air-breathing, high-speed scramjet propulsion using hydrocarbon fuel.
General Characteristics
Primary Function: Hypersonic scramjet-powered flight test demonstrator
Contractors: Boeing, Pratt & Whitney Rocketdyne
Power Plant: JP-7 fueled/cooled SJY61 supersonic combustion ramjet
Thrust: 500 – 1,000 pound class
Length: Full stack 25 feet; Cruiser 14 feet; Interstage 5 feet; Solid rocket booster 6 feet
Weight: Approx. 4,000 pounds
Fuel Capacity: Approx. 270 pounds JP-7
Speed: 3,600+ miles per hour (at Mach 6)
Range: 400+ nautical miles
Ceiling: 70,000 + feet
Crew: ground station monitored
Unit Cost: Unavailable
Initial Flight Test: May 26, 2010
Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.
"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
LION'S MANE PRODUCT
Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules
Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.
Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.

How about the aurora? It’s been flying for 20yrs at Mach 15,nobody said anything about that!
It will be used for War and not to benefit humanity! This X-51 Waverider just shows how far behind they keep us from technology while the Military Industrial Complex keeps humanity ignorant and controlled! We as a race will overcome slavery and be FREE! Our Free Will can never be taken from us!