Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Discovery Reveals What Our Solar System Looked Like as a Toddler

% of readers think this story is Fact. Add your two cents.


Astronomers have discovered a disc of planetary debris surrounding a young sun-like star that shares remarkable similarities with the Kuiper Belt that lies beyond Neptune, and may aid in understanding how our solar system developed.

Left: Image of HD 115600 showing a bright debris ring viewed nearly edge-on and located just beyond a Pluto-like distance to the star. Right: A model of the HD 115600 debris ring on the same scale.

Credit: T. Currie 

An international team of astronomers, including researchers from the University of Cambridge, has identified a young planetary system which may aid in understanding how our own solar system formed and developed billions of years ago.

Using the Gemini Planet Imager (GPI) at the Gemini South telescope in Chile, the researchers identified a disc-shaped bright ring of dust around a star only slightly more massive than the sun, located 360 light years away in the Centaurus constellation. The disc is located between about 37 and 55 Astronomical Units (3.4 – 5.1 billion miles) from its host star, which is almost the same distance as the solar system’s Kuiper Belt is from the sun. The brightness of the disc, which is due to the starlight reflected by it, is also consistent with a wide range of dust compositions including the silicates and ice present in the Kuiper Belt.

The Kuiper Belt lies just beyond Neptune, and contains thousands of small icy bodies left over from the formation of the solar system more than four billion years ago. These objects range in size from specks of debris dust, all the way up to moon-sized objects like Pluto – which used to be classified as a planet, but has now been reclassified as a dwarf planet.

The star observed in this new study is a member of the massive 10-20 million year-old Scorpius-Centaurus OB association, a region similar to that in which the sun was formed. The disc is not perfectly centred on the star, which is strong indication that it was likely sculpted by one or more unseen planets. By using models of how planets shape a debris disc, the team found that ‘eccentric’ versions of the giant planets in the outer solar system could explain the observed properties of the ring.

“It’s almost like looking at the outer solar system when it was a toddler,” said principal investigator Thayne Currie, an astronomer at the Subaru Observatory in Hawaii.

The current theory on the formation of the solar system holds that it originated within a giant molecular cloud of hydrogen, in which clumps of denser material formed. One of these clumps, rotating and collapsing under its own gravitation, formed a flattened spinning disc known as the solar nebula. The sun formed at the hot and dense centre of this disc, while the planets grew by accretion in the cooler outer regions. The Kuiper Belt is believed to be made up of the remnants of this process, so there is a possibility that once the new system develops, it may look remarkably similar to our solar system.

“To be able to directly image planetary birth environments around other stars at orbital distances comparable to the solar system is a major advancement,” said Dr Nikku Madhusudhan of Cambridge’s Institute of Astronomy, one of the paper’s co-authors. “Our discovery of a near-twin of the Kuiper Belt provides direct evidence that the planetary birth environment of the solar system may not be uncommon.”

This is the first discovery with the new cutting-edge Gemini instrument. “In just one of our many 50-second exposures we could see what previous instruments failed to see in more than 50 minutes,” said Currie.

The star, going by the designation HD 115600, was the first object the research team looked at. “Over the next few years, I’m optimistic that GPI will reveal many more debris discs and young planets. Who knows what strange, new worlds we will find,” Currie added.

The paper is accepted for publication in The Astrophysical Journal Letters.

Contacts and sources:
Sarah Collins


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.