Cosmology Looks beyond the Standard Model: Sterile Neutrinos, Shielded Candles and Modified Gravity
What are the mysterious dark matter and dark energy that seem to account for so much of our Universe? Why is the Universe expanding? For the past 30 years, most cosmologists have looked to the ‘standard model’ to answer these questions, and have had wide-ranging success in simulating formation in the universe and matching observational data. But not everything quite fits the predictions.
The most popular candidate for the elusive particles that give the Universe extra mass is Cold Dark Matter (CDM). CDM particles are thought to move slowly compared to the speed of light and interact very weakly with electromagnetic radiation. However, no one has managed to detect CDM to date. Sownak Bose from Durham University’s Institute for Computational Cosmology (ICC) will present new predictions at NAM 2015 for a different candidate for dark matter, the sterile neutrino, which may have been detected recently.
“The neutrinos are sterile in that they interact even more weakly than ordinary neutrinos; their predominant interaction is via gravity,” explained Bose. “The key difference with CDM is that just after the Big Bang, sterile neutrinos would have had comparatively larger velocities than CDM and would thus have been able to move in random directions away from where they were born.
Comparison of Cold Dark Matter (CDM) and sterile neutrino simulations of Milky Way-like dark matter haloes (the invisible “skeleton” within which the galaxy will actually form). C
Credit: M Lovell/ICC Durham. Click for an enlarged image
Last year, two independent groups detected an unexplained emission line at X-ray wavelengths in clusters of galaxies using the Chandra and XMM-Newton X-ray telescopes. The energy of the line fits with predictions for the energies at which sterile neutrinos would decay over the lifetime of the Universe. Bose and colleagues from the ICC in Durham are using sophisticated models of galaxy formation to investigate whether sterile neutrino corresponding to such a signal could help zero-in on the true identity of dark matter.
Our models show that a sterile neutrino with a mass corresponding to the signal detected would also be able to pass many current astrophysical tests of dark matter,” said Bose. “We may have seen the first evidence for sterile neutrinos and this would be hugely exciting.”
However, not everyone believes that extra mass from dark matter is needed to explain observations. Indranil Banik and colleagues at the University of St Andrews believe that a modified theory of gravity may be the answer. Banik and colleagues have constructed a detailed model predicting velocities of galaxies in the local group, which is dominated by the mass of our own Milky Way and the neighbouring Andromeda galaxy.
“On large scales, our Universe is expanding – galaxies further away are going away from us faster. But on local scales, the picture is more confusing,” said Banik. “We found that running our model in the context of Newtonian gravity did not match the observations very well. Some local group galaxies are travelling outwards so fast that it’s as if the Milky Way and Andromeda are exerting no gravitational pull at all!”
Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger
“This is like the trick spacecraft use to build up speed to reach the outer planets in our Solar System. Essentially, the big object – in this case the Milky Way or Andromeda – is slowed down slightly by the gravity from a passing object – the dwarf galaxy – which greatly speeds up as it’s much lighter. This fits our observations – but not predictions with Newtonian gravity. This is just not strong enough to be compatible with such a close encounter between the Milky Way and Andromeda. Thus, we believe that our work favours a modified gravity theory and adds to a growing body of evidence from observations of galaxies,” said Banik.
The amount of dark energy in the Universe is also a matter of debate. The first evidence for dark energy – an energy field causing the expansion of the Universe to accelerate – came through measurements of Type Ia supernovae, which are used by astronomers as cosmic lighthouses to determine distances. However, there is now increasing evidence that Type Ia supernovae are not ‘standard candles’ and the precise brightness reached by these exploding white dwarf stars depends on the environment in the host galaxy. Now, Dr Heather Campbell and colleagues at the University of Cambridge have used the largest sample of supernovae and host galaxies to date to study the relation between host galaxy and supernova luminosity.
The session convener, Prof Peter Coles said, “Although cosmology has made great progress in recent years, many questions remain unanswered and indeed many questions unasked. This meeting is a timely opportunity to look at some of the gaps in our current understanding and some of the ideas that are being put forward for how those gaps might be filled.”
Contacts and sources:
Dr Robert MasseyRoyal Astronomical Society (RAS)
Mr Sownak Bose
Institute for Computational Cosmology
Durham University
Dr Heather Campbell
Institute of Astronomy
University of Cambridge
Source:
Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.
"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world. Anyone can join. Anyone can contribute. Anyone can become informed about their world. "United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.
LION'S MANE PRODUCT
Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules
Mushrooms are having a moment. One fabulous fungus in particular, lion’s mane, may help improve memory, depression and anxiety symptoms. They are also an excellent source of nutrients that show promise as a therapy for dementia, and other neurodegenerative diseases. If you’re living with anxiety or depression, you may be curious about all the therapy options out there — including the natural ones.Our Lion’s Mane WHOLE MIND Nootropic Blend has been formulated to utilize the potency of Lion’s mane but also include the benefits of four other Highly Beneficial Mushrooms. Synergistically, they work together to Build your health through improving cognitive function and immunity regardless of your age. Our Nootropic not only improves your Cognitive Function and Activates your Immune System, but it benefits growth of Essential Gut Flora, further enhancing your Vitality.
Our Formula includes: Lion’s Mane Mushrooms which Increase Brain Power through nerve growth, lessen anxiety, reduce depression, and improve concentration. Its an excellent adaptogen, promotes sleep and improves immunity. Shiitake Mushrooms which Fight cancer cells and infectious disease, boost the immune system, promotes brain function, and serves as a source of B vitamins. Maitake Mushrooms which regulate blood sugar levels of diabetics, reduce hypertension and boosts the immune system. Reishi Mushrooms which Fight inflammation, liver disease, fatigue, tumor growth and cancer. They Improve skin disorders and soothes digestive problems, stomach ulcers and leaky gut syndrome. Chaga Mushrooms which have anti-aging effects, boost immune function, improve stamina and athletic performance, even act as a natural aphrodisiac, fighting diabetes and improving liver function. Try Our Lion’s Mane WHOLE MIND Nootropic Blend 60 Capsules Today. Be 100% Satisfied or Receive a Full Money Back Guarantee. Order Yours Today by Following This Link.
