Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

A God's Eye View: Most Detailed Simulation of the Universe to Date

% of readers think this story is Fact. Add your two cents.


Every galaxy harbours a supermassive black hole at its center. A new computer model now shows how these gravity monsters influence the large-scale structure of our universe.

Visualization of the intensity of shock waves in the cosmic gas (blue) around collapsed dark matter structures (orange/white). Similar to a sonic boom, the gas in these shock waves is accelerated with a jolt when impacting on the cosmic filaments and galaxies.

Credit: IllustrisTNG collaboration

Astrophysicists from Heidelberg, Garching, and the USA gained new insights into the formation and evolution of galaxies. They calculated how black holes influence the distribution of dark matter, how heavy elements are produced and distributed throughout the cosmos, and where magnetic fields originate. This was possible by developing and programming a new simulation model for the universe, which created the most extensive simulations of this kind to date.First results of the “IllustrisTNG” project have now been published in three articles in the journal Monthly Notices of the Royal Astronomical Society. These findings should help to answer fundamental questions in cosmology.

The IllustrisTNG project is an ongoing series of large, cosmological magnetohydrodynamical simulations of galaxy formation. TNG aims to illuminate the physical processes that drive galaxy formation: to understand when and how galaxies evolve into the structures that are observed in the night sky, and to make predictions for current and future observational programs.

Time evolution of the cosmic magnetic field strength. Blue/purple shows regions of low magnetic energy along filaments of the cosmic web, whereas orange and white indicate regions with significant magnetic energy inside halos and galaxies. The displayed region is taken from the TNG100 simulation and is 10 megaparsec wide.

Credit: TheHITSters

The research team includes scientists from the Heidelberg Institute for Theoretical Studies (HITS), Heidelberg University, the Max-Planck-Institutes for Astronomy (MPIA, Heidelberg) and for Astrophysics (MPA, Garching), US universities Harvard and the Massachusetts Institute of Technology (MIT), as well as the Center for Computational Astrophysics in New York. 

Credit: Mark Vogelsberger

The project, “Illustris – The Next Generation” (IllustrisTNG), is the most complete simulation of its kind to date. Based on the basic laws of physics, the simulation shows how our cosmos evolved since the Big Bang. Adding to the predecessor Illustris project, IllustrisTNG includes some of the physical processes which play a crucial role in this evolution for the very first time in such an extensive simulation. First results of the IllustrisTNG project have now been published in three articles in the journal Monthly Notices of the Royal Astronomical Society. 

 

These findings should help to answer fundamental questions in cosmology.

A realistic universe out of the computer

At its intersection points, the cosmic web of gas and dark matter predicted by IllustrisTNG hosts galaxies quite similar to the shape and size of real galaxies. For the first time, hydrodynamical simulations could directly compute the detailed clustering pattern of galaxies in space. Comparison with observational data – including newest large surveys – demonstrate the high degree of realism of IllustrisTNG.
 

Credit: CfA Press In addition, the simulations predict how the cosmic web changes over time, in particular in relation to the underlying “back bone” of the dark matter cosmos. “It is particularly fascinating that we can accurately predict the influence of supermassive black holes on the distribution of matter out to large scales,” says principal investigator Prof. Volker Springel (HITS, MPA, Heidelberg University). “This is crucial for reliably interpreting forthcoming cosmological measurements.”

TNG100-1: Fullbox composite which combines gas temperature (as the color) and shock mach number (as the brightness). Red indicates 10 million Kelvin gas at the centers of massive galaxy clusters, while bright structures show diffuse gas from the intergalactic medium shock heating at the boundary between cosmic voids and filaments.

Credit: IllustrisTNG collaboration

The most important transformation in the life cycle of galaxies

In another study, Dr. Dylan Nelson (MPA) was able to demonstrate the important impact of black holes on galaxies. Star-forming galaxies shine brightly in the blue light of their young stars until a sudden evolutionary shift ends the star formation, such that the galaxy becomes dominated by old, red stars, and joins a graveyard full of “red and dead” galaxies. “The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers,” explains Nelson. “The ultrafast outflows of these gravity traps reach velocities up to 10 percent of the speed of light and affect giant stellar systems that are billions of times larger than the comparably small black hole itself.”

Thin slice through the cosmic large-scale structure in the largest simulation of the IllustrisTNG project. The image brightness indicates the mass density and colour visualizes the mean gas temperature of ordinary (“baryonic”) matter. The displayed region extends by about 1.2 billion light-years from left to right. The underlying simulation is presently the largest magneto-hydrodynamic simulation of galaxy formation, containing more than 30 billion volume elements and particles.

Credit: IllustrisTNG collaboration

 

Where the stars sparkle: New findings for the structures of galaxies

IllustrisTNG also improves researchers´ understanding of the hierarchical structure formation of galaxies. Theorists argue that small galaxies should form first, and then merge into ever larger objects, driven by the relentless pull of gravity. The numerous galaxy collisions literally tear some galaxies apart and scatter their stars onto wide orbits around the newly created large galaxies, which should give them a faint background glow of stellar light. These predicted pale stellar halos are very difficult to observe due to their low surface brightness, but IllustrisTNG was able to simulate exactly what astronomers should be looking for in their data.

“Our predictions can now be systematically checked by observers,” Dr. Annalisa Pillepich (MPIA) points out, who led a further IllustrisTNG study. “This yields a critical test for the theoretical model of hierarchical galaxy formation.”

Astrophysics with a special code and a supercomputer

For the project, the researchers developed a particularly powerful version of their highly parallel moving-mesh code AREPO and used it on the Hazel Hen machine at the High-Performance Computing Center Stuttgart, Germany’s fastest mainframe computer, currently ranked nineteenth in the Top500. IllustrisTNG is the largest hydrodynamic simulation project to date for the emergence of cosmic structures. To compute one of the two main simulation runs, over 24,000 processors were used over the course of more than two months to follow the formation of millions of galaxies in a representative region of the universe with nearly one billion light-years on a side. 

Rendering of the gas velocity in a thin slice of 100-kiloparsec thickness (in the viewing direction), centered on the second most massive galaxy cluster in the TNG100 calculation. Where the image is black, the gas is hardly moving, while white regions have velocities which exceed 1,000 kilometers per second. The image contrasts the gas motions in cosmic filaments against the fast, chaotic motions triggered by the deep gravitational potential well and the supermassive black hole sitting at its center.

Credit: IllustrisTNG collaboration
 
“Thanks to the computing time obtained from the German Gauss Centre for Supercomputing, we have been able to redefine the state of the art in this field,” explains Volker Springel. “The new simulations produced more than 500 terabytes of simulation data. Analyzing this huge mountain of data will keep us busy for years to come, and it promises many exciting new insights into different astrophysical processes.”

The stellar content of the Universe on the largest scales: a projection of the distribution of stars across a 50 Mpc region of space. Taken from the TNG100-1 simulation at the present day (z=0)

Credit: IllustrisTNG collaboration

Contacts and sources:
Anastasia Greenebaum, Simons Foundation

Dr. Peter Saueressig, Heidelberg Institute for Theoretical Studies (HITS)

Dr. Annalisa Pillepich, Max-Planck Institute for Astronomy (MPIA) 

Original scientific publications:

V. Springel, R. Pakmor, A. Pillepich, R. Weinberger, D. Nelson, L. Hernquist, M. Vogelsberger, S. Genel, P. Torrey, F. Marinacci, J. Naiman
First results from the IllustrisTNG simulations: matter and galaxy clustering, MNRAS, Feb 1st, 2018 DOI: https://doi.org/10.1093/mnras/stx3304

D. Nelson, A. Pillepich, V. Springel, R. Weinberger, L. Hernquist, R. Pakmor, S. Genel, P. Torrey, M. Vogelsberger, G. Kauffmann, F. Marinacci, J. Naiman
First results from the IllustrisTNG simulations: the galaxy color bimodality, MNRAS, Feb 1st, 2018 DOI: https://doi.org/10.1093/mnras/stx3040

A. Pillepich, D. Nelson, L. Hernquist, V. Springel, R. Pakmor, P. Torrey, R. Weinberger, S. Genel, J. Naiman, F. Marinacci, M. Vogelsberger
First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies, MNRAS, Feb 1st, 2018 https://doi.org/10.1093/mnras/stx3112


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Total 1 comment
    • Gil Carlson

      “LOOK AT THE MOON AND EVERY DAY YOU WILL SEE US ALIENS LOOKING BACK AT YOU!” Discover the SECRETS OF THE ALIENS ON THE MOON! According to the aliens, the Moon is the key to the what the aliens are doing on Earth and the future of humans!
      https://www.amazon.com/dp/1635358701

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.