Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Plasma Bubbles Help Trigger Massive Magnetic Events in Outer Space

% of readers think this story is Fact. Add your two cents.


Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered key conditions that give rise to fast magnetic reconnection, the process that triggers solar flares, auroras, and geomagnetic storms that can disrupt signal transmissions and other electrical activities, including cell phone service. The process occurs when the magnetic field lines in plasma, the hot, charged state of matter composed of free electrons and atomic nuclei, break apart and violently reconnect, releasing vast amounts of energy. This happens in thin sheets of plasma, called current sheets, in which electric current is strongly concentrated.

By incorporating computer simulations, the findings add to an earlier theory of fast reconnection developed mathematically by physicists at PPPL and Princeton University. The new results incorporate a new predictive model that gives a more complete description of the physics involved.

The impact of reconnection can be felt throughout the universe. The process may cause enormous bursts of gamma-ray radiation thought to be associated with supernova explosions and the formation of ultra-dense neutron stars and black holes. “A gamma-ray burst in our Milky Way galaxy, if pointing towards Earth, could potentially cause a mass extinction event,” said PPPL physicist Yi-Min Huang, lead author of a paper reporting the findings in Astrophysical Journal. “Clearly, it is important to know when, how, and why magnetic reconnection takes place.”

PPPL physicist Yi-Min Huang

Credit: Elle Starkman / Office of Communications

Scientists have observed that reconnection happens suddenly, after a long period of quiescent behavior by magnetic fields inside current sheets. What exactly causes the magnetic fields to separate and reconnect, and why does the reconnection take place more quickly than theory says it should?

Using computer simulations and theoretical analysis, the physicists demonstrated that a phenomenon called the “plasmoid instability” creates bubbles within plasma that can lead to reconnection when certain conditions are met:
 

  • The plasma must have a high Lundquist number, which characterizes how well it conducts electricity.
  • Random fluctuations in the magnetic field of the plasma provide “seeds” from which the plasma instability grows.

Taken together, these conditions allow plasmoid instabilities to give rise to reconnection in current sheets. “Our study suggests that disruption of the current sheet caused by the plasmoid instability may provide a trigger,” Huang said.

The trigger breaks up two-dimensional sheets of electric current within plasma into bubbles, or plasmoids, and many smaller sheets. The growing number of sheets creates more opportunity for magnetic lines to break apart and join together. Reconnection also occurs in more than one place, causing the aggregate rate for an entire system to increase.

The smaller size of current sheets speeds up reconnection as well. Electromagnetic forces tend to propel the plasma between sheets, producing motion that accelerates when the sheets break into smaller ones. The accelerating plasma brings magnetic lines together more quickly and leads to faster reconnection rates.

Huang and fellow physicists would like to test their new model using experimental machines with additional capability. While no such machine exists at present, researchers look forward to a new unit that is coming online.

Funding for this research was provided by the National Science Foundation and the DOE (Fusion Energy Sciences). The simulations were performed by supercomputers at the Oak Ridge Leadership Computing Facility and the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory in Berkeley, California. Coauthors include Amitava Bhattacharjee, head of the Theory Department at PPPL, and Luca Comisso, a former PPPL and Princeton University physicist now at Columbia University.

 

 

Contacts and soources:
Princeton Plasma Physics Laboratory


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.