Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last Hour:
Last 24 Hours:
Total:

Giant Exoplanets with Eccentric, Close-In Orbits Explained by Giant-Impacts Phase

% of readers think this story is Fact. Add your two cents.


A giant-impacts phase in the evolution of planetary systems can explain the observations of close-in giant planets with eccentric orbits.

As planetary systems evolve, gravitational interactions between planets can fling some of them into eccentric elliptical orbits around the host star, or even out of the system altogether. Smaller planets should be more susceptible to this gravitational scattering, yet many gas giant exoplanets have been observed with eccentric orbits very different from the roughly circular orbits of the planets in our own solar system.

Surprisingly, the planets with the highest masses tend to be those with the highest eccentricities, even though the inertia of a larger mass should make it harder to budge from its initial orbit. This counter-intuitive observation prompted astronomers at UC Santa Cruz to explore the evolution of planetary systems using computer simulations. Their results, reported in a paper published in Astrophysical Journal Letters, suggest a crucial role for a giant-impacts phase in the evolution of high-mass planetary systems, leading to collisional growth of multiple giant planets with close-in orbits.

This artist’s concept illustrates the collision of two rocky planets. A new study proposes a scenario in which collisions between gas giant planets can lead to mergers and the formation of high-mass gas giants with close-in orbits. 
giant-impact-410.jpg
Image credit: NASA/JPL-Caltech
 
“A giant planet is not as easily scattered into an eccentric orbit as a smaller planet, but if there are multiple giant planets close to the host star, their gravitational interactions are more likely scatter them into eccentric orbits,” explained first author Renata Frelikh, a graduate student in astronomy and astrophysics at UC Santa Cruz.

Frelikh performed hundreds of simulations of planetary systems, starting each one with 10 planets in circular orbits and varying the initial total mass of the system and the masses of individual planets. As the systems evolved for 20 million simulated years, dynamical instabilities led to collisions and mergers to form larger planets as well as gravitational interactions that ejected some planets and scattered others into eccentric orbits.

Analyzing the results of these simulations collectively, the researchers found that the planetary systems with the most initial total mass produced the biggest planets and the planets with the highest eccentricities.

“Our model naturally explains the counter-intuitive correlation of mass and eccentricity,” Frelikh said.

Coauthor Ruth Murray-Clay, the Gunderson professor of theoretical astrophysics at UC Santa Cruz, said the only non-standard assumption in their model is that there can be several gas giant planets in the inner part of a planetary system. “If you make that assumption, all the other behavior follows,” she said.

According to the classic model of planet formation, based on our own solar system, there is not enough material in the inner part of the protoplanetary disk around a star to make gas giant planets, so only small rocky planets form in the inner part of the system and giant planets form farther out. Yet astronomers have detected many gas giants orbiting close to their host stars. Because they are relatively easy to detect, these “hot Jupiters” accounted for the majority of early exoplanet discoveries, but they may be an uncommon outcome of planet formation.

“This may be an unusual process,” Murray-Clay said. “We’re suggesting that it is more likely to happen when the initial mass in the disk is high, and that high-mass giant planets are produced during a phase of giant impacts.”

This giant-impacts phase is analogous to the final stage in the assembly of our own solar system, when the moon was formed in the aftermath of a collision between Earth and another planet. “Because of our solar system bias, we tend to think of impacts as happening to rocky planets and ejection as happening to giant planets, but there is a whole spectrum of possible outcomes in the evolution of planetary systems,” Murray-Clay said.

According to Frelikh, collisional growth of high-mass giant planets should be most efficient in the inner regions, because encounters between planets in the outer parts of the system are more likely to lead to ejections than mergers. Mergers producing high-mass planets should peak at a distance from the host star of around 3 astronomical units (AU, the distance from Earth to the sun), she said.

“We predict that the highest-mass giant planets will be produced by mergers of smaller gas giants between 1 to 8 AU from their host stars,” Frelikh said. “Exoplanet surveys have detected some extremely large exoplanets, approaching 20 times the mass of Jupiter. It may take a lot of collisions to produce those, so it’s interesting that we see this giant-impacts phase in our simulations.”

In addition to Frelikh and Murray-Clay, the coauthors of the paper include Hyerin Jang at UC Santa Cruz and Cristobal Petrovich at the University of Toronto. This work was funded by the National Science Foundation.

Contacts and sources:
Tim Stephens
UC Santa Cruz

 



Source:
Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Support BeforeitsNews by trying our natural health products! Join our affiliate program
Order by Phone at 888-809-8385 or online at
www.mitocopper.com


Get our Free Ebook, "Suppressed Health Secrets"  with  Natural Cures THEY don't want you to know!

APeX - Far superior to colloidal silver! Destroys Viruses, Bacteria, Pathogens with Oxygen plus Silver!

Supreme Fulvic - Nature's most important supplement! Vivid Dreams again!

Ultimate Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)
Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen! 
Organic Hemp Extract (CBD) - Full Spectrum high CBD (3300mg) hemp extract eases stiff joints, relieves stress and more!
Nascent Iodine - Promotes detoxification, mental focus and thyroid health.
Smart Meter Cover -  Reduces Smart Meter radiation by 96%!  (See Video)


FINAL WARNING!  Diseases are EXPLODING!  Watch this Video about APeX and You'll THROW AWAY Your Colloidal Silver!  APeX destroys Viruses, Bacteria and other Pathogens with the power of Oxygen PLUS Silver!  Nobody else has a product like THIS!   See why the inventor hasn't been sick in 16 years and why you'll never hear about it on the FAKE NEWS!  Get some now and tell your friends about it too so we can reach more people!  


APeX Interview - Superior to Colloidal Silver from Lee Canady on Vimeo.


Learn about APeX Here and Get the 50 Page Report in PDF format.   Call us at 888-809-8385 to order by phone.



Report abuse
Loading...
Loading...

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

MOST RECENT
Loading...
Load more ...

SignUp

Login

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.