Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Humans Trained to Use Echolocation with Tongue Clicks

% of readers think this story is Fact. Add your two cents.


Humans can be trained to use echolocation to estimate the sizes of enclosed spaces. LMU researchers now show that the learning process involves close coordination between sensory and motor cortex.
 
In principle, humans need not rely solely on vision for orientation. Some blind persons make use of self-generated sounds to estimate their position and orientation in an enclosed space relative to reflecting surfaces. They may tap the ground with a cane or produce clicks with their tongue, as some bat species do, and analyze the echoes to determine their distance to the surrounding walls.
 
Now a team led by Lutz Wiegrebe, a professor in the Department of Biology at LMU, has shown that sighted people can be taught to estimate room size with the help of self-generated clicks.
 
In collaboration with Dr. Virginia L. Flanagin from the German Center for Vertigo and Balance Disorders at the LMU Medical Center, the researchers monitored the activity in different regions of the brains of eleven sighted subjects and one blind person as they executed an echolocation task. The results enabled the team to analyze the neuronal mechanisms involved in echolocation in humans, and appear in the new issue of the Journal of Neuroscience.

Source: Axel Kock / fotolia.com

Wiegrebe and his colleagues have developed a technique based on functional magnetic resonance imaging (fMRI), which makes it possible, for the first time, to monitor the process of echolocation by means of self-generated tongue clicks.

 
 In the study, this set-up was used to train sighted subjects in echolocation. The researchers first characterized the acoustic properties of a real building – a small chapel with highly reflective surfaces and a long reverberation time. “In effect, we took an acoustic photograph of the chapel, and we were then able to computationally alter the scale of this sound image, which allowed us to compress it or expand the size of the virtual space at will,” Wiegrebe explains. 
 
The experimental subjects, fitted with a headset consisting of headphones and a microphone, were placed in the MRI scanner. They were then positioned within the virtual space by means of the signals fed to the headphones. The subjects produced tongue clicks, and the echoes corresponding to virtual spaces of different sizes – derived from the acoustic image – were played to them over the headphones. 
 
“All participants learned to perceive even small differences in the size of the space,” Wiegrebe says. Moreover, they were better able to assess the size of the virtual space when they actively produced the tongue clicks than when these were played back to them. In fact, one of the experimental subjects learned to estimate the size of the virtual space to within 4% of its actual size.

The set-up used for the experiment also allowed the neuronal mechanisms involved in echolocation to be characterized with the aid of the MRI scanner. “Echolocation requires a high degree of coupling between the sensory and the motor cortex,” Virginia Flanagin says. The sound waves generated by the tongue clicks are reflected by the surroundings and picked up by both ears, thus activating the sensory (auditory) cortex. In sighted subjects, this is followed shortly afterwards by activation of the motor cortex, which stimulates the tongue and the vocal cords to emit new clicking sounds. 

 
Experiments carried out with the congenitally blind participant, on the other hand, revealed that reception of the reflected sounds resulted in the activation of the visual cortex. “That the primary visual cortex can execute auditory tasks is a remarkable testimony to the plasticity of the human brain,” says Wiegrebe. Sighted subjects, on the other hand, exhibited only a relatively weak activation of the visual cortex during the echolocation task.

The researchers now plan to develop a dedicated training program, which enables blind persons to learn how to use tongue clicks for the purpose of echolocation.

Contacts and sources:

Ludwig-Maximilians-Universitaet Muenchen (LMU)

Citation:  The Journal of Neuroscience 2017


Source:



Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.