Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Sound Waves Levitate Multiple Objects – Future Technology for Contactless Medical Procedures

% of readers think this story is Fact. Add your two cents.


In the perhaps not so distant future, surgeons could perform a range of medical procedures all without touching the patient.

Surgeons won’t be shrunk and sent into the body like in the 1960s Sci-Fi, Fantastic Voyage, but could program a specialised array of mini-speakers to create an intricate sound field that ‘traps’ and manipulates selected objects in ‘acoustic tweezers’ for manipulation within tissue.

Researcher testing the acoustic traps generated by the Holographic Acoustic Tweezers

 Credit Sergio Larripa, Asier Marzo, Bruce Drinkwater 2018.

Advancements in acoustic tweezers from Professor Bruce Drinkwater in the Department of Mechanical Engineering, University of Bristol, and his colleague Dr Asier Marzo, from Universidad Publica De Navarra in Spain, are driving the technology towards this futuristic-sounding reality. The team’s recent developments published today (17 December) in the Proceedings of the National Academy of Sciences, demonstrate for the first time the acoustic levitation and manipulation of multiple objects simultaneously.

Professor Drinkwater envisions an iteration of this system eventually being used to acoustically stitch up internal injuries or deliver drugs to target organs. He said: “Now we have more versatility – multiple pairs of hands to move things and perform complex procedures, it opens up possibilities that just weren’t there before.”

Sound exerts a small acoustic force and by turning up the volume of ultrasonic waves, too high pitched for humans to hear, scientists create a sound field strong enough to move small objects. Now Professor Drinkwater and Dr Marzo have enabled the efficient generation of sound fields complex enough to trap multiple objects at the target locations.

Dr Marzo explained: “We applied a novel algorithm that controls an array of 256 small loudspeakers – and that is what allows us to create the intricate, tweezer-like, acoustic fields.” https://youtu.be/0Up5kr5Xgcg Acoustic tweezers have similar capabilities to optical tweezers, the 2018 Nobel prize winner, which uses lasers to trap and transport micro-particles. However, acoustic tweezers have the edge over optical systems when it comes to operating within human tissue.

Lasers only travel through transparent media, making them tricky to use for applications within biological tissue. On the other hand, ultrasound is routinely used in pregnancy scans and kidney stone treatment as it can safely and non-invasively penetrate biological tissue.

Credit: University of Bristol

Another advantage is that acoustic devices are 100,000 times more power efficient than optical systems. Professor Drinkwater explained: “Optical tweezers are a fantastic technology, but always dangerously close to killing the cells being moved, with acoustics we’re applying the same sort of forces but with way less energy associated. There’s lots of applications that require cellular manipulation and acoustic systems are perfect for them.”

To demonstrate the accuracy of their system, the scientists attached two millimetric polystyrene spheres to a piece of thread and used the acoustic tweezers to “sew” the thread into a piece of fabric. The system can also simultaneously control the 3D movement of up to 25 of these spheres in air.

The team is confident that the same methodology could be adapted to in-water particle manipulation in approximately one year. They hope that soon after, it could be adapted for use in biological tissue.

Dr Marzo explained: “The flexibility of ultrasonic sound waves will allow us to operate at micrometre scales to position cells within 3D printed assemblies or living tissue. Or on a larger scale, to levitate tangible pixels that form a physical hologram in mid-air.”

This project has been funded by the UK Engineering and Physical Science Research Council.

Contacts and sources:
University of Bristol

Citation: ‘Holographic Acoustic Tweezers’ by A. Marzo, and B.W. Drinkwater is published in Proceedings of the National Academy of Sciences.


Source: http://www.ineffableisland.com/2018/12/sound-waves-levitate-multiple-objects.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.