Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By HfjNUlYZ (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Robotic “Gray Goo:”

% of readers think this story is Fact. Add your two cents.


Supreme Fulvic – Nature’s most important supplement! Read our amazing testimonials and experience vivid dreams again!

 Researchers have created a new kind of robot composed of many simple particles with no centralized control or single point of failure

This video provides an overview of the particle robotics concept, describing the capabilities and experimental results.

Video Credit: Richa Batra, Shuguang Li, Jane Nisselson, Kyle Parsons/Columbia Engineering |

 

 The concept of “gray goo,” a robot comprised of billions of nanoparticles, has fascinated science fiction fans for decades. But most researchers have dismissed it as just a wild theory.

Current robots are usually self-contained entities made of interdependent subcomponents, each with a specific function. If one part fails, the robot stops working. In robotic swarms, each robot is an independently functioning machine.

In a new study published today in Nature, researchers at Columbia Engineering and MIT Computer Science & Artificial Intelligence Lab (CSAIL) demonstrate for the first time a way to make a robot composed of many loosely coupled components, or “particles.” Unlike swarm or modular robots, each component is simple and has no individual address or identity. In their system, which the researchers call a “particle robot,” each particle can perform only uniform volumetric oscillations (slightly expanding and contracting), but cannot move independently.

The team, led by Hod Lipson, professor of mechanical engineering at Columbia Engineering, and CSAIL Director Daniela Rus, discovered that when they grouped thousands of these particles together in a “sticky” cluster and made them oscillate in reaction to a light source, the entire particle robot slowly began to move forward, towards the light.

Robotic Particles

 Photo Credit: Shuguang Li/Columbia Engineering

Particle robots are composed of loosely coupled components, or particles, that lack an individual identity or addressable position. They are capable of only a simple motion—expansion and contraction. However, when a group of particles is coordinated to move as a collective, interesting behavior is observed. Even in amorphous configurations, particle robots exploit statistical mechanics phenomena to produce locomotion.

 Light Source

Photo Credit: Richa Batra, Jane Nisselson, Kyle Parsons/Columbia Engineering

The particle motion can be phase-modulated by an environmental stimulus, such as a light source. Here, we show a particle robot in which each component measures its light intensity, broadcasts its value to the group, and receives the intensity values of its neighbors to determine its phase delay. This produces undulating motion, with net movement towards the light source.

“You can think of our new robot as the proverbial ‘Gray Goo,’” says Lipson. “Our robot has no single point of failure and no centralized control. It’s still fairly primitive, but now we know that this fundamental robot paradigm is actually possible. We think it may even explain how groups of cells can move together, even though individual cells cannot.”

Researchers have been building autonomous robots for more than a century, but these have been non-biological machines that cannot grow, heal, or recover from damage. The Columbia Engineering/MIT team has been focused on developing robust, scalable robots that can function even when individual components fail.

“We’ve been trying to fundamentally rethink our approach to robotics, to discover if there is a way to make robots differently,” says Lipson, who directs the Creative Machines lab. “Not just make a robot look like a biological creature but actually construct it like a biological system, to create something that is vast in complexity and abilities yet composed of fundamentally simple parts.”

Rus, who is also the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT, adds, “All creatures in nature are made of cells that combine in different ways to make organisms. In developing particle robots, the question we ask is, can we have robotic cells that can be composed in different ways to make different robots? The robot could have the best shape required by the task—a snake to crawl through a tunnel or a three-handed machine for a factory floor. We could even give these particle robots the ability to make themselves. Suppose, for example, that a robot needs a screw driver from the table—the screw driver is too far to reach. What if the robot could reshuffle its cells to grow an extra long arm? As its goals change, its body can change too.”

The team, working with Chuck Hoberman at Harvard’s Wyss Institute and other researchers at Cornell, used many identical components, or particles, that could perform a simple motion like expansion and contraction. In simulations, they demonstrated robots comprising 100,000 particles. Experimentally, they demonstrated a system comprising two dozen particles.

“The particles closer to the light source experience brighter light and thus start their cycle earlier,” explains Shuguang Li, co-first author of the paper who conducted the physical experiments. Li, who was a postdoctoral fellow in Lipson’s former lab at Cornell and is currently a postdoc with Rus at CSAIL, continues, “That movement creates a sort of wave throughout the cluster, from the ones closer to the light to the ones further away, and that wave makes the entire cluster move towards the light. The movement toward light creates a global motion, even though the individual particles cannot move independently.”

Modeling this behavior in simulations, they explored obstacle avoidance and object transport at greater scales, with hundreds and thousands of particles. They were also able to demonstrate the resilience of their particle robot paradigm both to noisy components and to individual failure.

“We found that our particle robots maintained approximately half of their fully functioning speed even when 20 percent of the particles are dead,” says Richa Batra, co-first author of the paper and Lipson’s PhD student who led the simulation studies.

The team is already testing their system with a larger number of cm-scale particles. They are also exploring other forms of particle robots, such as vibrating microspheres.

“We think it will be possible one day to make these kinds of robots from millions of tiny particles, like microbeads that respond to sound or light or chemical gradient,” says Lipson. “Such robots could be used to do things like clean up areas or explore unknown terrains/structures.”

Contacts and sources:
Holly Evarts

Columbia University School of Engineering and Applied Science

Citation: “Particle robotics based on statistical mechanics of loosely-coupled components.”
Authors are: Shuguang Li 1, 2; Richa Batra 2; David Brown 3; Hyun-Dong Chang 3; Nikhil Ranganathan 3; Chuck Hoberman 4,5; Daniela Rus 1; Hod Lipson 2
1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
2 Creative Machines Laboratory, Mechanical Engineering Department, Columbia Engineering
3 School of Mechanical and Aerospace Engineering, Cornell University
4 Graduate School of Design, Harvard University
5 Wyss Institute for Biologically Inspired Engineering, Harvard University

Get Paid to Expose the Fake News! https://tinyurl.com/y2rodxfg

Support BeforeitsNews by trying APeX (far superior to colloidal silver) or any of our other great products at www.mitocopper.com

Check out the life changing BeforeitsNews natural health products and sign up to be an Affiliate so you earn on all sales through your links on Beforeitsnews, other websites or social networks!

APeX – Far superior to colloidal silver in destroying viruses, bacteria and other pathogens. See the videos and 50 page report!

Ultimate Curcumin – Most powerful natural pain relief you can buy. Reduce inflammation, depression, arthritis and so much more!

Supreme Fulvic – Nature’s most important supplement! Read our amazing testimonials and experience vivid dreams again!

MitoCopper – First bioavailable copper cleans up your blood from pathogens and gives you more energy! Watch all videos on our website

Use code Alton777 for a 10% discount on products


Source: http://www.ineffableisland.com/2019/03/robotic-gray-goo.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.