Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

The Boiling Crisis May Soon Be Solved

% of readers think this story is Fact. Add your two cents.


The simple act of boiling water is one of humankind’s oldest inventions, and still central to many of today’s technologies, from coffee makers to nuclear power plants. Yet this seemingly simple process has complexities that have long defied full understanding.  A new understanding of heat transfer in boiling water could lead to efficiency improvements in power plants

Now, researchers at MIT have found a way to analyze one of the thorniest problems facing heat exchangers and other technologies in which boiling water plays a central role: how to predict, and prevent, a dangerous and potentially catastrophic event called a boiling crisis. This is the point when so many bubbles form on a hot surface that they coalesce into a continuous sheet of vapor that blocks any further heat transfer from the surface to the water.

Image shows the rate of heat transfer from a metal surface, with red the highest and blue the lowest. The large blue areas show the beginning of a boiling crisis.

Courtesy of the researchers

Such events can cause weakening or melting, so nuclear plants are designed to operate at levels far below those that could trigger a boiling crisis. This new understanding might allow such plants to operate safely at higher output levels by reducing the needed operating margins.

The new results are presented today in the journal Physical Review Letters in a paper by assistant professor of nuclear engineering Matteo Bucci and graduate students Limiao Zhang and Jee Hyun Seong.

“It’s a very complex phenomenon,” Bucci says, and although it has been “studied for over a century, it’s still very controversial.” Even in the 21st century, he says, “we talk about an energy revolution, a computer revolution, nanoscale transistors, all kinds of great things. Yet, still in this century, and maybe even in the next century, these are all limited by heat transfer.”

As computer chips get smaller and more powerful, for example, some high-performance processors may require liquid cooling to dissipate heat that can be too intense for ordinary cooling fans. (Some supercomputers, and even some high-end gaming PCs, already use pumped water to cool their chips). Likewise, the power plants that produce most of the world’s electricity, whether they be fossil fuel, solar, or nuclear plants, mainly produce power by generating steam to turn turbines.

In a nuclear plant, water is heated by the fuel rods, which heat up through nuclear reactions. The spread of heat through the metal surfaces to the water is responsible for transferring energy from the fuel to the generating turbine, but it also is key to preventing the fuel from overheating and potentially leading to a meltdown. In the case of a boiling crisis, the formation of a layer of vapor separating the liquid from the metal can prevent the heat from being transferred, and can lead to rapid overheating.

Because of that risk, regulations require nuclear plants to operate at heat fluxes that are no more than 75 percent of the level known as the critical heat flux (CHF), which is the level when a boiling crisis could be triggered that could damage critical components. But since the theoretical foundations of the CHF are poorly understood, those levels are estimated very conservatively. It’s possible that those plants could be operated at higher heat levels, thus producing more power from the same nuclear fuel, if the phenomenon is understood with greater certainty, Bucci says.

A better understanding of boiling and the CHF is “such a difficult problem because it is very nonlinear,” and small changes in materials or surface textures can have large effects, he says. But now, thanks to better instruments able to capture details of the process in lab experiments, “we have been able to actually measure and chart the phenomenon with the required spatial and temporal resolution” to be able to understand how a boiling crisis gets started in the first place.

It turns out the phenomenon is closely related to the flow of traffic in a city, or to the way an outbreak of disease spreads through a population. Essentially, it’s an issue of the way things clump together.

When the number of cars in a city reaches a certain threshold, there is a greater

likelihood that they will bunch up in certain places and cause a traffic jam. And, when carriers of disease enter crowded places like airports or auditoriums, the chances of triggering an epidemic are increased. The researchers found that the population of bubbles on a heated surface follows a similar pattern; above a certain bubble density, the likelihood goes up that bubbles will crowd together, merge, and form an insulating layer on that surface.

“The boiling crisis is essentially the result of an accumulation of bubbles that merge and coalesce with each other, which leads to failure of the surface,” he says.

Because of the similarities, Bucci says, “we can take inspiration, take the same approach to model boiling as is used to model traffic jams,” and those models have already been well-explored. Now, based on both experiments and mathematical analysis, Bucci and his co-authors have been able to quantify the phenomenon and arrive at better ways to pin down when the onset of such bubble mergers will take place. “We showed that using this paradigm, we can predict when the boiling crisis will occur,” based on the patterns and density of bubbles that are forming.

The nanoscale texture of the surface plays an important role, the analysis shows, and that’s one of several factors that might be used to make adjustments that could raise the CHF, and thus potentially lead to more reliable heat transfer, whether for power plants, liquid cooling for advanced computer chips, or many other processes where heat transfer is a crucial factor.

“We can use this information not only to predict the boiling crisis, but also to explore solutions, by changing the boiling surface, to minimize the interaction between bubbles,” Bucci says. “We’re using this understanding to improve the surface, so we can control and avoid the ‘bubble jam.’”

If this research enables changes that could allow for safe operation of nuclear plants at higher heat fluxes — that is, the rate at which they dissipate heat — than currently allowed, the impact could be significant. “If you can show that by manipulating the surface, you can increase the critical heat flux by 10 to 20 percent, then you increase the power produced by the same amount, on a global scale, by making better use of the fuel and resources that are already there,” Bucci says.

Contacts and sources:
Karl-Lydie Jean-Baptiste
Massachusetts Institute of Technology

Citation: Percolative Scale-Free Behavior in the Boiling Crisis Limiao Zhang, Jee Hyun Seong, and Matteo Bucci Phys. Rev. Lett. 122, 134501 http://dx.doi.org/10.1103/PhysRevLett.122.134501


Source: http://www.ineffableisland.com/2019/04/the-boiling-crisis-may-soon-be-solved.html


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.